Skip to main content
Log in

Plasma Heating During Coronal Mass Ejections Observed in X-Rays

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In this work, we study where heating takes place during coronal mass ejections (CMEs). For this purpose, we have used the data of the Mg xii spectroheliograph on board the Complex Orbital Observations Near-Earth of Activity on the Sun (CORONAS)-F satellite. This instrument obtained images of the solar corona in the Mg xii 8.42 Å line, which emits only at temperatures higher than 4 MK. After analyzing the Mg xii data archive from 2001 to 2003, we found ten high-temperature eruptive events. Each of them was associated with a CME and nine were associated with a flare. The eruptive structures had temperatures higher than 4 MK and a characteristic size of 100 – 200 Mm. The events were observed by the Mg xii spectroheliograph for 10 min to 3 h. In the Mg xii images, the peak intensity of the eruptive structures was 0.2 – 14.4% of the peak intensity of the flaring active regions below them. Based on the shape of the events, we divided them into three groups: loop-like, sheet-like, and cloud-like. We interpreted loop-like events as hot flux ropes and sheet-like ones as hot plasma surrounding current sheets. Based on the available data, we cannot determine the nature of the cloud-like events. Their appearance could be caused by projection effects, a postflare reconnection, a shock wave, or a small-scale reconnection in the CME volume. Our estimates suggest that, in solar maxima, plasma should be heated above 4 MK during approximately one out of six CMEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data Availability

The EIT data are courtesy of the SOHO/EIT consortia. SOHO is a project of international cooperation between ESA and NASA. The SOHO/LASCO data are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut fur Aeronomie (Germany), Laboratoire d’Astronomie (France), and the University of Birmingham (UK). The Mg xii spectroheliograph data are available from the corresponding author on reasonable request.

References

  • Birn, J., Fletcher, L., Hesse, M., Neukirch, T.: 2009, Energy release and transfer in solar flares: simulations of three-dimensional reconnection. Astrophys. J. 695, 1151. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carmichael, H.: 1964, A process for flares. NASA SP-50, 451. ADS.

    ADS  Google Scholar 

  • Chen, P.F.: 2011, Coronal mass ejections: models and their observational basis. Living Rev. Solar Phys. 8, 1. DOI.

    Article  ADS  Google Scholar 

  • Chen, X., Liu, R., Deng, N., Wang, H.: 2017, Thermodynamics of supra-arcade downflows in solar flares. Astron. Astrophys. 606, A84. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Zhang, J., Saar, S.H., Ding, M.D.: 2012, Differential emission measure analysis of multiple structural components of coronal mass ejections in the inner corona. Astrophys. J. 761, 62. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ciaravella, A., Raymond, J.C.: 2008, The current sheet associated with the 2003 November 4 coronal mass ejection: density, temperature, thickness, and line width. Astrophys. J. 686, 1372. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ciaravella, A., Raymond, J.C., Li, J., Reiser, P., Gardner, L.D., Ko, Y.-K., Fineschi, S.: 2002, Elemental abundances and post-coronal mass ejection current sheet in a very hot active region. Astrophys. J. 575, 1116. DOI. ADS.

    Article  ADS  Google Scholar 

  • Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV imaging spectrometer for Hinode. Solar Phys. 243, 19. DOI. ADS.

    Article  ADS  Google Scholar 

  • Delaboudinière, J., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291. DOI. ADS.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Filippov, B., Koutchmy, S.: 2002, About the prominence heating mechanisms during its eruptive phase. Solar Phys. 208, 283. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gary, D.E., Chen, B., Dennis, B.R., Fleishman, G.D., Hurford, G.J., Krucker, S., McTiernan, J.M., Nita, G.M., Shih, A.Y., White, S.M., Yu, S.: 2018, Microwave and hard X-ray observations of the 2017 September 10 solar limb flare. Astrophys. J. 863, 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Glesener, L., Krucker, S., Bain, H.M., Lin, R.P.: 2013, Observation of heating by flare-accelerated electrons in a solar coronal mass ejection. Astrophys. J. Lett. 779, L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-Ray Telescope (XRT) for the Hinode mission. Solar Phys. 243, 63. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Mäkelä, P., Xie, H., Akiyama, S., Monstein, C.: 2018, Extreme kinematics of the 2017 September 10 solar eruption and the spectral characteristics of the associated energetic particles. Astrophys. J. Lett. 863, L39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kuzin, S.V., Urnov, A.M., Zhitnik, I.A., Uralov, A.M., Bogachev, S.A., Livshits, M.A., Bugaenko, O.I., Zandanov, V.G., Ignat’ev, A.P., Krutov, V.V., Oparin, S.N., Pertsov, A.A., Slemzin, V.A., Chertok, I.M., Stepanov, A.I.: 2006, Long-lived hot coronal structures observed with CORONAS-F/SPIRIT in the Mg XII line. Solar Syst. Res. 40, 286. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guidoni, S.E., McKenzie, D.E., Longcope, D.W., Plowman, J.E., Yoshimura, K.: 2015, Temperature and electron density diagnostics of a candle-flame-shaped flare. Astrophys. J. 800, 54. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hannah, I.G., Kontar, E.P.: 2013, Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere. Astron. Astrophys. 553, A10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harrison, R.A., Sawyer, E.C., Carter, M.K., Cruise, A.M., Cutler, R.M., Fludra, A., Hayes, R.W., Kent, B.J., Lang, J., Parker, D.J., Payne, J., Pike, C.D., Peskett, S.C., Richards, A.G., Gulhane, J.L., Norman, K., Breeveld, A.A., Breeveld, E.R., Al Janabi, K.F., McCalden, A.J., Parkinson, J.H., Self, D.G., Thomas, P.D., Poland, A.I., Thomas, R.J., Thompson, W.T., Kjeldseth-Moe, O., Brekke, P., Karud, J., Maltby, P., Aschenbach, B., Bräuninger, H., Kühne, M., Hollandt, J., Siegmund, O.H.W., Huber, M.C.E., Gabriel, A.H., Mason, H.E., Bromage, B.J.I.: 1995, The coronal diagnostic spectrometer for the solar and heliospheric observatory. Solar Phys. 162, 233. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. I: Evaporating flare model. Solar Phys. 34, 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hudson, H.S., Kosugi, T., Nitta, N.V., Shimojo, M.: 2001, Hard X-radiation from a fast coronal ejection. Astrophys. J. Lett. 561, L211. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kim, Y.-H., Moon, Y.-J., Cho, K.-S., Bong, S.-C., Park, Y.-D.: 2004, Study of flare-associated X-ray plasma ejections: II. Morphological classification. J. Korean Astron. Soc. 37, 171. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kim, Y.-H., Moon, Y.-J., Cho, K.-S., Kim, K.-S., Park, Y.D.: 2005, A study of flare-associated X-ray plasma ejections. I. Association with coronal mass ejections. Astrophys. J. 622, 1240. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kim, S., Shibasaki, K., Bain, H.-M., Cho, K.-S.: 2014, Plasma upflows and microwave emission in hot supra-arcade structure associated with an M1.6 limb flare. Astrophys. J. 785, 106. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kirichenko, A.S., Bogachev, S.A.: 2013, Long-duration plasma heating in solar microflares of X-ray class A1.0 and lower. Astron. Lett. 39, 797. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kirichenko, A.S., Bogachev, S.A.: 2017a, Plasma heating in solar microflares: statistics and analysis. Astrophys. J. 840, 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kirichenko, A.S., Bogachev, S.A.: 2017b, The relation between magnetic fields and X-ray emission for solar microflares and active regions. Solar Phys. 292, 120. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ko, Y.-K., Raymond, J.C., Lin, J., Lawrence, G., Li, J., Fludra, A.: 2003, Dynamical and physical properties of a post-coronal mass ejection current sheet. Astrophys. J. 594, 1068. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuzin, S.V., Andreev, E.A., Korneev, V.V., Krutov, V.V., Mitropolosky, M.M., Pertzov, A.A., Stasevich, V.N., Sobelman, I.I., Tindo, I.P., Zhitnik, I.A.: 1994, X-ray spectroheliographs with the Bragg focusing optics for the CORONAS project: design, fabrication, and optical testing. In: Fineschi, S. (ed.) X-Ray and Ultraviolet Spectroscopy and Polarimetry, SPIE Conf. Ser. 2283, 242. DOI. ADS.

    Chapter  Google Scholar 

  • Landi, E., Raymond, J.C., Miralles, M.P., Hara, H.: 2010, Physical conditions in a coronal mass ejection from Hinode, stereo, and SOHO observations. Astrophys. J. 711, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Landi, E., Raymond, J.C., Miralles, M.P., Hara, H.: 2012, Post-coronal mass ejection plasma observed by Hinode. Astrophys. J. 751, 21. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lastufka, E., Krucker, S., Zimovets, I., Nizamov, B., White, S., Masuda, S., Golovin, D., Litvak, M., Mitrofanov, I., Sanin, A.: 2019, Multiwavelength stereoscopic observation of the 2013 May 1 solar flare and CME. Astrophys. J. 886, 9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lee, J.-Y., Raymond, J.C., Ko, Y.-K., Kim, K.-S.: 2009, Three-dimensional structure and energy balance of a coronal mass ejection. Astrophys. J. 692, 1271. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, L.P., Zhang, J.: 2013, Eruptions of two flux ropes observed by SDO and STEREO. Astron. Astrophys. 552, L11. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Chen, Q., Petrosian, V.: 2013, Plasmoid ejections and loop contractions in an eruptive M7.7 solar flare: evidence of particle acceleration and heating in magnetic reconnection outflows. Astrophys. J. 767, 168. DOI. ADS.

    Article  ADS  Google Scholar 

  • Longcope, D., Unverferth, J., Klein, C., McCarthy, M., Priest, E.: 2018, Evidence for downflows in the narrow plasma sheet of 2017 September 10 and their significance for flare reconnection. Astrophys. J. 868, 148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Murphy, N.A., Raymond, J.C., Korreck, K.E.: 2011, Plasma heating during a coronal mass ejection observed by the solar and heliospheric observatory. Astrophys. J. 735, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Murphy, N.A., Sovinec, C.R., Cassak, P.A.: 2010, Magnetic reconnection with asymmetry in the outflow direction. J. Geophys. Res. 115, A09206. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nindos, A., Patsourakos, S., Vourlidas, A., Tagikas, C.: 2015, How common are hot magnetic flux ropes in the low solar corona? A statistical study of EUV observations. Astrophys. J. 808, 117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ohyama, M., Shibata, K.: 2008, Hot and cool plasmoid ejections associated with a solar flare. Publ. Astron. Soc. Japan 60, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oraevsky, V.N., Sobelman, I.I.: 2002, Comprehensive studies of solar activity on the CORONAS-F satellite. Astron. Lett. 28, 401. DOI. ADS.

    Article  ADS  Google Scholar 

  • Owens, M.J.: 2009, The formation of large-scale current sheets within magnetic clouds. Solar Phys. 260, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reeves, K.K., Golub, L.: 2011, Atmospheric imaging assembly observations of hot flare plasma. Astrophys. J. Lett. 727, L52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reeves, K.K., Linker, J.A., Mikić, Z., Forbes, T.G.: 2010, Current sheet energetics, flare emissions, and energy partition in a simulated solar eruption. Astrophys. J. 721, 1547. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reeves, K.K., Freed, M.S., McKenzie, D.E., Savage, S.L.: 2017, An exploration of heating mechanisms in a supra-arcade plasma sheet formed after a coronal mass ejection. Astrophys. J. 836, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reeves, K.K., Török, T., Mikić, Z., Linker, J., Murphy, N.A.: 2019, Exploring plasma heating in the current sheet region in a three-dimensional coronal mass ejection simulation. Astrophys. J. 887, 103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reva, A.A., Ulyanov, A.S., Kuzin, S.V.: 2016, Current sheet structures observed by the TESIS EUV telescope during a flux rope eruption on the sun. Astrophys. J. 832, 16. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reva, A., Shestov, S., Bogachev, S., Kuzin, S.: 2012, Investigation of hot X-ray points (HXPs) using spectroheliograph Mg xii experiment data from CORONAS-F/SPIRIT. Solar Phys. 276, 97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reva, A., Shestov, S., Zimovets, I., Bogachev, S., Kuzin, S.: 2015, Wave-like formation of hot loop arcades. Solar Phys. 290, 2909. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reva, A.A., Kirichenko, A.S., Ulyanov, A.S., Kuzin, S.V.: 2017, Observations of the coronal mass ejection with a complex acceleration profile. Astrophys. J. 851, 108. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reva, A., Ulyanov, A., Kirichenko, A., Bogachev, S., Kuzin, S.: 2018, Estimate of the upper limit on hot plasma differential emission measure (DEM) in non-flaring active regions and nanoflare frequency based on the Mg xii spectroheliograph data from CORONAS-F/SPIRIT. Solar Phys. 293, 140. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reva, A.A., Kuzin, S.V., Kirichenko, A.S., Ulyanov, A.S., Loboda, I.P., Bogachev, S.A.: 2021, Monochromatic X-ray imagers of the sun based on the Bragg crystal optics. Front. Astron. Space Sci. 8, 40. DOI.

    Article  ADS  Google Scholar 

  • Reva, A.A., Bogachev, S.A., Loboda, I.P., Ulyanov, A.S., Kirichenko, A.S.: 2022, Observations of current sheet heating in X-ray during a solar flare. Astrophys. J. 931, 93. DOI. ADS.

    Article  ADS  Google Scholar 

  • Robbrecht, E., Berghmans, D., Van der Linden, R.A.M.: 2009, Automated LASCO CME catalog for solar cycle 23: are CMEs scale invariant? Astrophys. J. 691, 1222. DOI. ADS.

    Article  ADS  Google Scholar 

  • Savage, S.L., McKenzie, D.E., Reeves, K.K.: 2012, Re-interpretation of supra-arcade downflows in solar flares. Astrophys. J. Lett. 747, L40. DOI. ADS.

    Article  ADS  Google Scholar 

  • Savage, S.L., McKenzie, D.E., Reeves, K.K., Forbes, T.G., Longcope, D.W.: 2010, Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9 “Cartwheel CME” flare. Astrophys. J. 722, 329. DOI. ADS.

    Article  ADS  Google Scholar 

  • Seaton, D.B., Bartz, A.E., Darnel, J.M.: 2017, Observations of the formation, development, and structure of a current sheet in an eruptive solar flare. Astrophys. J. 835, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Seaton, D.B., Forbes, T.G.: 2009, An analytical model for reconnection outflow jets including thermal conduction. Astrophys. J. 701, 348. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature 211, 695. DOI. ADS.

    Article  ADS  Google Scholar 

  • The SunPy Community, Barnes, W.T., Bobra, M.G., Christe, S.D., Freij, N., Hayes, L.A., Ireland, J., Mumford, S., Perez-Suarez, D., Ryan, D.F., Shih, A.Y., Chanda, P., Glogowski, K., Hewett, R., Hughitt, V.K., Hill, A., Hiware, K., Inglis, A., Kirk, M.S.F., Konge, S., Mason, J.P., Maloney, S.A., Murray, S.A., Panda, A., Park, J., Pereira, T.M.D., Reardon, K., Savage, S., Sipocz, B.M., Stansby, D., Jain, Y., Taylor, G., Yadav, T., Rajul, D.T.K.: 2020, The SunPy project: open source development and status of the version 1.0 core package. Astrophys. J. 890, 68. DOI.

    Article  ADS  Google Scholar 

  • Tripathi, S.K.P., Gekelman, W.: 2010, Laboratory simulation of arched magnetic flux rope eruptions in the solar atmosphere. Phys. Rev. Lett. 105, 075005. DOI.

    Article  ADS  Google Scholar 

  • Tsuneta, S., Acton, L., Bruner, M., Lemen, J., Brown, W., Caravalho, R., Catura, R., Freeland, S., Jurcevich, B., Owens, J.: 1991, The soft X-ray telescope for the SOLAR-A mission. Solar Phys. 136, 37. DOI. ADS.

    Article  ADS  Google Scholar 

  • Urnov, A.M., Shestov, S.V., Bogachev, S.A., Goryaev, F.F., Zhitnik, I.A., Kuzin, S.V.: 2007, On the spatial and temporal characteristics and formation mechanisms of soft X-ray emission in the solar corona. Astron. Lett. 33, 396. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warren, H.P., Brooks, D.H., Ugarte-Urra, I., Reep, J.W., Crump, N.A., Doschek, G.A.: 2018, Spectroscopic observations of current sheet formation and evolution. Astrophys. J. 854, 122. DOI. ADS.

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys. 9, 3. DOI.

    Article  ADS  Google Scholar 

  • Wilson, M.L., Raymond, J.C., Lepri, S.T., Lionello, R., Murphy, N.A., Reeves, K.K., Shen, C.: 2022, Constraining the CME core heating and energy budget with SOHO/UVCS. Astrophys. J. 927, 27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xu, X., Wei, F., Feng, X.: 2011, Observations of reconnection exhausts associated with large-scale current sheets within a complex ICME at 1 AU. J. Geophys. Res. 116, A05105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yan, X.L., Yang, L.H., Xue, Z.K., Mei, Z.X., Kong, D.F., Wang, J.C., Li, Q.L.: 2018, Simultaneous observation of a flux rope eruption and magnetic reconnection during an X-class solar flare. Astrophys. J. Lett. 853, L18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ye, J., Cai, Q., Shen, C., Raymond, J.C., Lin, J., Roussev, I.I., Mei, Z.: 2020, The role of turbulence for heating plasmas in eruptive solar flares. Astrophys. J. 897, 64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yokoyama, T., Shibata, K.: 1998, A two-dimensional magnetohydrodynamic simulation of chromospheric evaporation in a solar flare based on a magnetic reconnection model. Astrophys. J. Lett. 494, L113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhitnik, I.A., Bougaenko, O.I., Delaboudiniere, J.-P., Ignatiev, A.P., Korneev, V.V., Krutov, V.V., Kuzin, S.V., Lisin, D.V., Mitrofanov, A.V., Oparin, S.N., Oraevsky, V.N., Pertsov, A.A., Slemzin, V.A., Sobelman, I.I., Stepanov, A.I., Schwarz, J.: 2002, SPIRIT X-ray telescope/spectroheliometer results. In: Wilson, A. (ed.) Solar Variability: From Core to Outer Frontiers, ESA SP-506, 915. ADS.

    Google Scholar 

  • Zhu, C., Liu, R., Alexander, D., McAteer, R.T.J.: 2016, Observation of the evolution of a current sheet in a solar flare. Astrophys. J. Lett. 821, L29. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work used version (DOI) of the SunPy open source software package (The SunPy Community et al., 2020).

Funding

This research was funded by a grant from the Russian Science Foundation (grant No 21-72-10157, https://rscf.ru/project/21-72-10157/).

Author information

Authors and Affiliations

Authors

Contributions

Reva A.A. and Bogachev S.A. wrote the main manuscript text. Kirichenko A.S., Ulyanov A.S., and Reva A.A. searched for eruptive events in the Mg XII archive. Reva A.A. and Loboda I.P. prepared Figures 1-7. All authors reviewed the manuscript.

Corresponding author

Correspondence to Anton Reva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reva, A., Bogachev, S., Loboda, I. et al. Plasma Heating During Coronal Mass Ejections Observed in X-Rays. Sol Phys 298, 61 (2023). https://doi.org/10.1007/s11207-023-02154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02154-1

Keywords

Navigation