Skip to main content

Advertisement

Log in

Near-Earth High-Speed and Slow Solar Winds: A Statistical Study on Their Characteristics and Geomagnetic Impacts

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Near-Earth solar winds are separated into two groups: slow solar wind (SSW) with plasma speed [\(V_{\mathrm{sw}}\)] \(< 500\) km s−1 and high-speed solar wind (HSW) with \(V_{\mathrm{sw}} > 700\) km s−1. A comparative study is performed on the plasma and interplanetary magnetic field (IMF) properties of the near-Earth SSW and HSW, using solar wind measurements propagated to Earth’s bow shock nose from 1963 through 2022. On average, HSW is characterized by higher alpha-to-proton density ratio [\(N_{\mathrm{a}}/N_{\mathrm{p}}\)] (67%), ram pressure [\(P_{ \mathrm{sw}}\)] (95%), proton temperature [\(T_{\mathrm{p}}\)] (370%), reconnection electric field [\(VB_{\mathrm{s}}\)] (141%), Alfvén speed [\(V_{\mathrm{A}}\)] (76%), magnetosonic speed [\(V_{\mathrm{ms}}\)] (65%), and lower proton density [\(N_{\mathrm{p}}\)] (52%) and plasma-\(\beta\) (54%) than SSW. In \(VB_{\mathrm{s}}\), \(V = V_{\mathrm{sw}}\), \(B_{\mathrm{s}}\) is the southward component of IMF. \(V_{\mathrm{A}} = B_{0}/\sqrt{\mu_{0}\rho}\), \(V_{\mathrm{ms}} = \sqrt{V_{\mathrm{A}}^{2}+V_{\mathrm{S}}^{2}}\), where \(B_{0}\) is the IMF magnitude, \(\mu_{0}\) is the free space permeability, \(\rho\) is the solar wind mass density, and \(V_{\mathrm{S}}\) is the sound speed. \(\beta\) is defined as the plasma pressure to the magnetic-pressure ratio. The geomagnetic activity is found to be enhanced during HSW, as reflected in higher average auroral electrojet index [AE] (213%) and stronger geomagnetic Dst index (367%) compared to those during SSW. The SSW characteristic parameters \(N_{\mathrm{a}}/N_{\mathrm{p}}\), \(T_{\mathrm{p}}\), \(B_{0}\), \(V_{\mathrm{A}}\), and \(V_{\mathrm{ms}}\) exhibit medium to strong correlations (correlation coefficients \(r = 0.51\) to 0.87) with the \(F_{\mathrm{10.7}}\) solar flux, while \(\beta\) and Mach numbers exhibit strong anti-correlations (\(r = -0.82\) to −0.90) with \(F_{\mathrm{10.7}}\). The associations are weaker or insignificant for HSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

The Ulysses solar wind data are obtained from COHOWeb (omniweb.gsfc.nasa.gov/coho/). The near-Earth solar wind and IMF measurements are obtained from OMNIWeb (omniweb.gsfc.nasa.gov/). The geomagnetic indices are obtained from the World Data Center for Geomagnetism, Kyoto, Japan (wdc.kugi.kyoto-u.ac.jp/). The \(F_{10.7}\) solar flux data are obtained from the Laboratory for Atmospheric and Space Physics (LASP) Interactive Solar Irradiance Data Center (lasp.colorado.edu/lisird/).

References

  • Abbo, L., Ofman, L., Antiochos, S.K., Hansteen, V.H., Harra, L., Ko, Y.-K., Lapenta, G., Li, B., Riley, P., Strachan, L., von Steiger, R., Wang, Y.-M.: 2016, Slow solar wind: observations and modeling. Space Sci. Rev. 201, 55. DOI.

    Article  ADS  Google Scholar 

  • Belcher, J.W., Davis, L. Jr.: 1971, Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534. DOI.

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1974, Interplanetary stream interfaces. J. Geophys. Res. 79, 3717. DOI.

    Article  ADS  Google Scholar 

  • Burlaga, L.F., Behannon, K.W., Hansen, S.F., Pneuman, G.W., Feldman, W.C.: 1978, Sources of magnetic fields in recurrent interplanetary streams. J. Geophys. Res. 83, 4177. DOI.

    Article  ADS  Google Scholar 

  • Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204. DOI.

    Article  ADS  Google Scholar 

  • Carrington, R.C.: 1859, Description of a Singular Appearance seen in the Sun on September 1, 1859. Mon. Not. Roy. Astron. Soc. 20, 13. DOI.

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2011, Coronal mass ejections: models and their observational basis. Living Rev. Solar Phys. 8, 1. DOI.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Feynman, J., Garrett, H.B.: 1990, An estimate of the maximum speed of the solar wind, 1938-1989. J. Geophys. Res. 95, 17103. DOI.

    Article  ADS  Google Scholar 

  • D’Amicis, R., Perrone, D., Bruno, R., Velli, M.: 2021, On Alfvénic slow wind: a journey from the Earth back to the Sun. J. Geophys. Res. 126, e2020JA028996. DOI.

    Article  ADS  Google Scholar 

  • Davis, L. Jr.: 1966, Models of interplanetary fields and plasma flow. In: Mackin, R.J., Neugebauer, M. (eds.) The Solar Wind, Pergamon Press, New York, 147.

    Google Scholar 

  • Davis, L. Jr., Smith, E.J., Coleman, P.J., Sonett, C.P.: 1966, Interplanetary magnetic measurements. In: Mackin, R.J., Neugebauer, M. (eds.) The Solar Wind, Pergamon Press, New York, 35.

    Google Scholar 

  • Gosling, J.T., Hundhausen, A.J., Bame, S.J.: 1976, Solar wind stream evolution at large heliocentric distances: experimental demonstration and the test of a model. J. Geophys. Res. 81, 2111. DOI.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Asbridge, J.R., Bame, S.J., Feldman, W.C.: 1978, Solar wind stream interfaces. J. Geophys. Res. 83, 1401. DOI.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Borrini, G., Asbridge, J.R., Bame, S.J., Feldman, W.C., Hansen, R.T.: 1981, Coronal streamers in the solar wind at 1 AU. J. Geophys. Res. 86, 5438. DOI.

    Article  ADS  Google Scholar 

  • Grandin, M., Aikio, A.T., Kozlovsky, A.: 2019, Properties and geoeffectiveness of solar wind high-speed streams and stream interaction regions during solar cycles 23 and 24. J. Geophys. Res. 124, 3871. DOI.

    Article  Google Scholar 

  • Hajra, R.: 2021a, Variation of the interplanetary shocks in the inner heliosphere. Astrophys. J. 917, 91. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R.: 2021b, September 2017 space-weather events: a study on magnetic reconnection and geoeffectiveness. Solar Phys. 296, 50. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R.: 2021c, Weakest solar cycle of the space age: a study on solar wind–magnetosphere energy coupling and geomagnetic activity. Solar Phys. 296, 33. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Sunny, J.V.: 2022, Corotating interaction regions during solar cycle 24: a study on characteristics and geoeffectiveness. Solar Phys. 297, 30. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Tsurutani, B.T.: 2018, Interplanetary shocks inducing magnetospheric supersubstorms (\({SML} <-2500\) nT): unusual auroral morphologies and energy flow. Astrophys. J. 858, 123. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Tsurutani, B.T.: 2022, Near-Earth sub-Alfvénic solar winds: interplanetary origins and geomagnetic impacts. Astrophys. J. 926, 135. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Solar cycle dependence of high-intensity long-duration continuous AE activity (HILDCAA) events, relativistic electron predictors? J. Geophys. Res. 118, 5626. DOI.

    Article  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D., Santolik, O.: 2015, Relativistic (\(E >0.6\), \(>2.0\), and \(>4.0\) MeV) electron acceleration at geosynchronous orbit during high-intensity, long-duration, continuous AE activity (HILDCAA) events. Astrophys. J. 799, 39. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Henri, P., Myllys, M., Héritier, K.L., Galand, M., Simon Wedlund, C., Breuillard, H., Behar, E., Edberg, N.J.T., Goetz, C., Nilsson, H., Eriksson, A.I., Goldstein, R., Tsurutani, B.T., Moré, J., Vallières, X., Wattieaux, G.: 2018, Cometary plasma response to interplanetary corotating interaction regions during 2016 June–September: a quantitative study by the Rosetta Plasma Consortium. Mon. Not. Roy. Astron. Soc. 480, 4544. DOI.

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 29, 505. DOI.

    Article  ADS  Google Scholar 

  • Lamy, P.L., Floyd, O., Boclet, B., Wojak, J., Gilardy, H., Barlyaeva, T.: 2019, Coronal mass ejections over solar cycles 23 and 24. Space Sci. Rev. 215, 39. DOI.

    Article  ADS  Google Scholar 

  • McComas, D.J., Barraclough, B.L., Funsten, H.O., Gosling, J.T., Santiago-Muñoz, E., Skoug, R.M., Goldstein, B.E., Neugebauer, M., Riley, P., Balogh, A.: 2000, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419. DOI.

    Article  ADS  Google Scholar 

  • Nakagawa, Y., Nozawa, S., Shinbori, A.: 2019, Relationship between the low-latitude coronal hole area, solar wind velocity, and geomagnetic activity during solar cycles 23 and 24. Earth Planets Space 71, 24. DOI.

    Article  ADS  Google Scholar 

  • Ness, N.F., Wilcox, J.M.: 1964, Solar origin of the interplanetary magnetic field. Phys. Rev. Lett. 13, 461. DOI.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Snyder, C.W.: 1966, Mariner 2 observations of the solar wind: 1. Average properties. J. Geophys. Res. 71, 4469. DOI.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1965, Dynamical theory of the solar wind. Space Sci. Rev. 4, 666. DOI.

    Article  ADS  Google Scholar 

  • Phillips, J.L., Bame, S.J., Feldman, W.C., Gosling, J.T., Hammond, C.M., McComas, D.J., Goldstein, B.E., Neugebauer, M., Scime, E.E., Suess, S.T.: 1995, Ulysses solar wind plasma observations at high southerly latitudes. Science 268, 1030. DOI.

    Article  ADS  Google Scholar 

  • Pizzo, V.J.: 1985, In: Tsurutani, B.T., Stone, R.G. (eds.) Interplanetary Shocks on the Large Scale: A Retrospective on the Last Decade’s Theoretical Efforts 35, AGU, Washington, 51.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 1992, Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge, 0521431085.

    MATH  Google Scholar 

  • Reiff, P.H.: 1990, The use and misuse of statistics in space physics. J. Geomagn. Geoelectr. 42, 1145. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cliver, E.W., Cane, H.V.: 2000, Sources of geomagnetic activity over the solar cycle: relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J. Geophys. Res. 105, 18203. DOI.

    Article  ADS  Google Scholar 

  • Sanchez-Diaz, E., Rouillard, A.P., Lavraud, B., Segura, K., Tao, C., Pinto, R., Sheeley, N.R. Jr, Plotnikov, I.: 2016, The very slow solar wind: properties, origin and variability. J. Geophys. Res. 121, 2830. DOI.

    Article  Google Scholar 

  • Sarabhai, V.: 1963, Some consequences of nonuniformity of solar wind velocity. J. Geophys. Res. 68, 1555. DOI.

    Article  ADS  Google Scholar 

  • Schwabe, H.: 1844, Sonnen — Beobachtungen im Jahre 1843. Astron. Nachr. 21, 234. DOI.

    Article  ADS  Google Scholar 

  • Scolini, C., Messerotti, M., Poedts, S., Rodriguez, L.: 2018, Halo coronal mass ejections during Solar Cycle 24: reconstruction of the global scenario and geoeffectiveness. J. Space Weather Space Clim. 8, A09. DOI.

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Harvey, J.W.: 1981, Coronal holes, solar wind streams, and geomagnetic disturbances during 1978 and 1979. Solar Phys. 70, 237. DOI.

    Article  ADS  Google Scholar 

  • Sheeley, N.R., Harvey, J.W., Feldman, W.C.: 1976, Coronal holes, solar wind streams, and recurrent geomagnetic disturbances: 1973-1976. Solar Phys. 49, 271. DOI.

    Article  ADS  Google Scholar 

  • Smith, E.J., Tsurutani, B.T., Rosenberg, R.L.: 1978, Observations of the interplanetary sector structure up to heliographic latitudes of \(16^{\circ}\): pioneer 11. J. Geophys. Res. 83, 717. DOI.

    Article  ADS  Google Scholar 

  • Smith, E.J., Wolfe, J.H.: 1976, Observations of interaction regions and corotating shocks between one and five AU: pioneers 10 and 11. Geophys. Res. Lett. 3, 137. DOI.

    Article  ADS  Google Scholar 

  • Suess, S.T., Ko, Y.-K., von Steiger, R., Moore, R.L.: 2009, Quiescent current sheets in the solar wind and origins of slow wind. J. Geophys. Res. 114, A04103. DOI.

    Article  ADS  Google Scholar 

  • Sunny, J.V., Nair, A.G., Babu, M., Hajra, R.: 2023, A comparative study on geoeffective and non-geoeffective corotating interaction regions. Adv. Space Res. 71, 268. DOI.

    Article  ADS  Google Scholar 

  • Syed Ibrahim, M., Joshi, B., Cho, K.-S., Kim, R.-S., Moon, Y.-J.: 2019, Interplanetary coronal mass ejections during solar cycles 23 and 24: Sun-Earth propagation characteristics and consequences at the near-Earth region. Solar Phys. 294, 54. DOI.

    Article  ADS  Google Scholar 

  • Tang, F., Tsurutani, B.T., Gonzalez, W.D., Akasofu, S.I., Smith, E.J.: 1989, Solar sources of interplanetary southward Bz events responsible for major magnetic storms (1978-1979). J. Geophys. Res. 94, 3535. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Echer, E., Gonzalez, W.D.: 2011, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields. Ann. Geophys. 29, 839. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: 1987, The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfvén wave trains. Planet. Space Sci. 35, 405. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Hajra, R.: 2022, Extremely slow (\(V_{\mathrm{sw}} <300\) km s−1) solar winds (ESSWs) at 1 au: causes of extreme geomagnetic quiet at Earth. Astrophys. J. 936, 155. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Tang, F., Lee, Y.T.: 1992, Great magnetic storms. Geophys. Res. Lett. 19, 73. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Lakhina, G.S., Alex, S.: 2003, The extreme magnetic storm of 1-2 September 1859. J. Geophys. Res. 108, 1268. DOI.

    Article  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Zhou, X.-Y., Lepping, R.P., Bothmer, V.: 2004, Properties of slow magnetic clouds. J. Atmos. Solar-Terr. Phys. 66, 147. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., Vasyliunas, V.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. 111, A07S01. DOI.

    Article  Google Scholar 

  • Tsurutani, B.T., Hajra, R., Tanimori, T., Takada, A., Remya, B., Mannucci, A.J., Lakhina, G.S., Kozyra, J.U., Shiokawa, K., Lee, L.C., Echer, E., Reddy, R.V., Gonzalez, W.D.: 2016, Heliospheric plasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms. J. Geophys. Res. 121, 10130. DOI.

    Article  Google Scholar 

  • Verbanac, G., Bandić, M., Krauss, S.: 2022, Influence of the solar wind high-speed streams on the thermospheric neutral density during the declining phase of solar cycle 23. Adv. Space Res. 69, 4335. DOI.

    Article  ADS  Google Scholar 

  • Verbanac, G., Vršnak, B., Veronig, A., Temmer, M.: 2011a, Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astron. Astrophys. 526, A20. DOI.

    Article  ADS  Google Scholar 

  • Verbanac, G., Vršnak, B., Živković, S., Hojsak, T., Veronig, A.M., Temmer, M.: 2011b, Solar wind high-speed streams and related geomagnetic activity in the declining phase of solar cycle 23. Astron. Astrophys. 533, A49. DOI.

    Article  ADS  Google Scholar 

  • Verbanac, G., Živković, S., Vršnak, B., Bandić, M., Hojsak, T.: 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astron. Astrophys. 558, A85. DOI.

    Article  ADS  Google Scholar 

  • Vršnak, B., Temmer, M., Veronig, A.M.: 2007, Coronal holes and solar wind high-speed streams: II. Forecasting the geomagnetic effects. Solar Phys. 240, 331. DOI.

    Article  ADS  Google Scholar 

  • Vršnak, B., Dumbović, M., Čalogović, J., Verbanac, G., Poljanı̌ć–Beljan, I.: 2017, Geomagnetic effects of corotating interaction regions. Solar Phys. 292, 140. DOI.

    Article  ADS  Google Scholar 

  • Winterhalter, D., Smith, E.J., Burton, M.E., Murphy, N., McComas, D.J.: 1994, The heliospheric plasma sheet. J. Geophys. Res. 99, 6667. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work is funded by the Science and Engineering Research Board (SERB, grant no. SB/S2/RJN-080/2018), a statutory body of the Department of Science and Technology (DST), Government of India through the Ramanujan Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

I am the sole author of this paper.

Corresponding author

Correspondence to Rajkumar Hajra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajra, R. Near-Earth High-Speed and Slow Solar Winds: A Statistical Study on Their Characteristics and Geomagnetic Impacts. Sol Phys 298, 53 (2023). https://doi.org/10.1007/s11207-023-02141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02141-6

Keywords

Navigation