Skip to main content
Log in

A Study of the Possible Mechanism of the Ground Level Enhancement on 28 October 2021

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We have analyzed the particle acceleration processes and energy spectra for the ground level enhancement (GLE) event on 28 October 2021 using the in situ data registered by ground-based and space-borne instruments. It is found that the onset of the soft X-ray flare component (1 – 8 Å) lies close to the onset of the GLE (≥1 GeV) and high-energy (>500 MeV) proton fluxes, indicating that the GLE event might have been initiated by the flare acceleration process. It is observed that the coronal shock traced in m-Type II burst that operates over the flare acceleration phase plays a role on the impulsive phase of high energy particles. However, the coronal shock traced in DH-Type II burst that operates over the coronal mass ejection (CME) propagation phase plays a more important role in the reacceleration of the protons of low energy (≤80 MeV) than those of high energy (>80 MeV), thus supporting previous suggestions that the CME shock prolongs the temporal evolution of low-energy proton fluxes. The finding is supported by the analyses of proton energy spectra. For instance, the peak energy spectrum after the flare follows a double power-law, exhibiting that the break energy appeared at ∼80 MeV whilst the peak spectrum of the low-energy proton fluxes is harder than that of the high-energy proton fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability

The GOES, ACE, and Wind data are freely available through the NOAA network at www.ngdc.noaa.gov/stp/satellite/goes-r.html, izw1.caltech.edu/ACE/ASC/level2/ and solar-radio.gsfc.nasa.gov/data/wind/, respectively. The NM data are freely available through the Neutron Monitor Database at www.nmdb.eu/nest/index.php.

References

  • Afanasiev, A., Vainio, R., Kocharov, L.: 2014, The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons. Astrophys. J. 790, 36. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 1996, Electron versus proton timing delays in solar flares. Astrophys. J. Lett. 470, L69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2006, The localization of particle acceleration sites in solar flares and CMES. Space Sci. Rev. 124, 361. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2012, GeV particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci. Rev. 171, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Battarbee, M., Dalla, S., Marsh, M.S.: 2017, Solar energetic particle transport near a heliospheric current sheet. Astrophys. J. 836, 138. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bazilevskaya, G.A., Stozhkov, Y.I., Struminsky, A.B.: 1994, The influence of interplanetary shocks on solar protons measured in the stratosphere. Adv. Space Res. 14, 717. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bieber, J.W., Dröge, W., Evenson, P.A., Pyle, R., Ruffolo, D., Pinsook, U., Tooprakai, P., Rujiwarodom, M., Khumlumlert, T., Krucker, S.: 2002, Energetic particle observations during the 2000 July 14 solar event. Astrophys. J. 567, 622. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: the radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bruno, A.: 2017, Calibration of the GOES 13/15 high-energy proton detectors based on the PAMELA solar energetic particle observations. Space Weather 15, 1191. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cane, H.V., McGuire, R.E., von Rosenvinge, T.T.: 1986, Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares. Astrophys. J. 301, 448. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cane, H.V., Mewaldt, R.A., Cohen, C.M.S., von Rosenvinge, T.T.: 2006, Role of flares and shocks in determining solar energetic particle abundances. J. Geophys. Res. 111, A06S90. DOI. ADS.

    Article  Google Scholar 

  • Cliver, E.W.: 2016, Flare vs. shock acceleration of high-energy protons in solar energetic particle events. Astrophys. J. 832, 128. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cohen, C., Luhmann, J.G., Mewaldt, R.A., Mays, M.L., Bain, H.M., Li, Y., Lee, C.O.: 2017, Searching for extreme SEP events with STEREO. In: 35th International Cosmic Ray Conference (ICRC2017), International Cosmic Ray Conference 301, 134. ADS.

    Google Scholar 

  • Compagnino, A., Romano, P., Zuccarello, F.: 2017, A statistical study of CME properties and of the correlation between flares and CMEs over solar cycles 23 and 24. Solar Phys. 292, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O., Tsiropoula, G.: 2015, Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Solar Phys. 290, 841. DOI. ADS.

    Article  ADS  Google Scholar 

  • Doran, D.J., Dalla, S.: 2016, Temporal evolution of solar energetic particle spectra. Solar Phys. 291, 2071. DOI. ADS.

    Article  ADS  Google Scholar 

  • Duffin, R.T., White, S.M., Ray, P.S., Kaiser, M.L.: 2015, Type III-L solar radio bursts and solar energetic particle events. J. Phys. Conf. Ser. 642, 012006. DOI. ADS.

    Article  Google Scholar 

  • Dulk, G.A., Leblanc, Y., Bastian, T.S., Bougeret, J.-L.: 2000, Acceleration of electrons at type II shock fronts and production of shock-accelerated type III bursts. J. Geophys. Res. 105, 27343. DOI. ADS.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Cho, K.-S., Hwang, J., Phani Kumar, D.V., Lee, J.J., Oh, S.Y., Kaushik, S.C., Kudela, K., Rybanský, M., Dorman, L.I.: 2010, Characteristics of ground-level enhancement-associated solar flares, coronal mass ejections, and solar energetic particles. J. Geophys. Res. 115, A09105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Moon, Y.-J., Park, S.-H., Kudela, K., Islam, J.N., Dorman, L.I.: 2011, On the possible mechanisms of two ground-level enhancement events. Astrophys. J. 743, 190. DOI. ADS.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Gan, W.Q., Moon, Y.-J., Li, C.: 2012, An interpretation of the possible mechanisms of two ground-level enhancement events. Astrophys. J. 758, 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Gan, W.Q., Li, Y.P., Rodríguez-Pacheco, J., Kudela, K.: 2019a, On the possible mechanism of GLE initiation. Astrophys. J. 872, 178. DOI. ADS.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Gan, W.Q., Moon, Y.-J., Rodríguez-Pacheco, J., Li, Y.P.: 2019b, On the relation between flare and CME during GLE-SEP and non-GLE-SEP events. Astrophys. J. 883, 91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Firoz, K.A., Gan, W.Q., Li, Y.P., Rodríguez-Pacheco, J., Dorman, L.I.: 2022, Duration and fluence of major solar energetic particle (SEP) events. Solar Phys. 297, 71. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gold, R.E., Krimigis, S.M., Hawkins, I.S.E., Haggerty, D.K., Lohr, D.A., Fiore, E., Armstrong, T.P., Holland, G., Lanzerotti, L.J.: 1998, Electron, proton, and alpha monitor on the advanced composition explorer spacecraft. Space Sci. Rev. 86, 541. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kuzmenko, I.V.: 2020, A geoeffective CME caused by the eruption of a quiescent prominence on 29 September 2013. Solar Phys. 295, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kurt, V.G., Chertok, I.M., Uralov, A.M., Nakajima, H., Altyntsev, A.T., Belov, A.V., Yushkov, B.Y., Kuznetsov, S.N., Kashapova, L.K., Meshalkina, N.S., Prestage, N.P.: 2008, An extreme solar event of 20 January 2005: properties of the flare and the origin of energetic particles. Solar Phys. 252, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Chertok, I.M., Kuzmenko, I.V., Afanasyev, A.N., Meshalkina, N.S., Kalashnikov, S.S., Kubo, Y.: 2011, Coronal shock waves, EUV waves, and their relation to CMEs. I. Reconciliation of “EIT waves”, type II radio bursts, and leading edges of CMEs. Solar Phys. 273, 433. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kiselev, V.I., Meshalkina, N.S., Chertok, I.M.: 2015, Relations between microwave bursts and near-Earth high-energy proton enhancements and their origin. Solar Phys. 290, 2827. DOI. ADS.

    Article  ADS  Google Scholar 

  • Haggerty, D.K., Roelof, E.C.: 2002, Impulsive near-relativistic solar electron events: delayed injection with respect to solar electromagnetic emission. Astrophys. J. 579, 841. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hamini, A., Auxepaules, G., Birée, L., Kenfack, G., Kerdraon, A., Klein, K.-L., Lespagnol, P., Masson, S., Coutouly, L., Fabrice, C., Romagnan, R.: 2021, ORFEES – a radio spectrograph for the study of solar radio bursts and space weather applications. J. Space Weather Space Clim. 11, 57. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harrison, R.A.: 1995, The nature of solar flares associated with coronal mass ejection. Astron. Astrophys. 304, 585. ADS.

    ADS  Google Scholar 

  • Hu, S., Semones, E.: 2022, Calibration of the GOES 6-16 high-energy proton detectors based on modelling of ground level enhancement energy spectra. J. Space Weather Space Clim. 12, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jang, S., Moon, Y.-J., Kim, R.-S., Kim, S., Lee, J.-O.: 2017, Two distinct types of CME-flare relationships based on SOHO and STEREO observations. Astrophys. J. 845, 169. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jing, J., Qiu, J., Lin, J., Qu, M., Xu, Y., Wang, H.: 2005, Magnetic reconnection rate and flux-rope acceleration of two-ribbon flares. Astrophys. J. 620, 1085. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kahler, S.: 1994, Injection profiles of solar energetic particles as functions of coronal mass ejection heights. Astrophys. J. 428, 837. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klassen, A., Krucker, S., Kunow, H., Müller-Mellin, R., Wimmer-Schweingruber, R., Mann, G., Posner, A.: 2005, Solar energetic electrons related to the 28 October 2003 flare. J. Geophys. Res. 110, A09S04. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klecker, B., Möbius, E., Popecki, M.A.: 2006, Solar energetic particle charge states: an overview. Space Sci. Rev. 124, 289. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klein, K.-L., Masson, S., Bouratzis, C., Grechnev, V., Hillaris, A., Preka-Papadema, P.: 2014, The relativistic solar particle event of 2005 January 20: origin of delayed particle acceleration. Astron. Astrophys. 572, A4. DOI. ADS.

    Article  Google Scholar 

  • Klein, K.-L., Musset, S., Vilmer, N., Briand, C., Krucker, S., Francesco Battaglia, A., Dresing, N., Palmroos, C., Gary, D.E.: 2022, The relativistic solar particle event on 28 October 2021: evidence of particle acceleration within and escape from the solar corona. Astron. Astrophys. 663, A173. DOI. ADS.

    Article  Google Scholar 

  • Kocharov, L., Kovaltsov, G., Torsti, J., Usoskin, I., Zirin, H., Anttila, A., Vainio, R.: 1996, The 1990 May 24 solar flare and cosmic ray event. In: Ramaty, R., Mandzhavidze, N., Hua, X.-M. (eds.) High Energy Solar Physics, American Institute of Physics Conference Series 374, 246. DOI. ADS.

    Chapter  Google Scholar 

  • Kocharov, L., Vainio, R., Pomoell, J., Valtonen, E., Klassen, A., Young, C.A.: 2012, Non-standard energy spectra of shock-accelerated solar particles. Astrophys. J. 753, 87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kocharov, L., Pohjolainen, S., Mishev, A., Reiner, M.J., Lee, J., Laitinen, T., Didkovsky, L.V., Pizzo, V.J., Kim, R., Klassen, A., Karlicky, M., Cho, K.-S., Gary, D.E., Usoskin, I., Valtonen, E., Vainio, R.: 2017, Investigating the origins of two extreme solar particle events: proton source profile and associated electromagnetic emissions. Astrophys. J. 839, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kress, B.T., Rodriguez, J.V., Boudouridis, A., Onsager, T.G., Dichter, B.K., Galica, G.E., Tsui, S.: 2021, Observations from NOAA’s newest solar proton sensor. Space Weather 19, e02750. DOI. ADS.

    Article  Google Scholar 

  • Kurt, V., Belov, A., Mavromichalaki, H., Gerontidou, M.: 2004, Statistical analysis of solar proton events. Ann. Geophys. 22, 2255. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lario, D., Berger, L., Wilson, I.L.B., Decker, R.B., Haggerty, D.K., Roelof, E.C., Wimmer-Schweingruber, R.F., Giacalone, J.: 2018, Flat proton spectra in large solar energetic particle events. J. Phys. Conf. Ser. 1100, 012014. DOI. ADS.

    Article  Google Scholar 

  • Laurenza, M., Consolini, G., Storini, M., Damiani, A.: 2015, The Weibull functional form for SEP event spectra. J. Phys. Conf. Ser. 632, 012066. DOI. ADS.

    Article  Google Scholar 

  • Le, G.-M., Zhang, X.-F.: 2017, Dependence of large SEP events with different energies on the associated flares and CMEs. Res. Astron. Astrophys. 17, 123. DOI. ADS.

    Article  ADS  Google Scholar 

  • Le, G.-M., Li, C., Zhang, X.-F.: 2017, Dependence of E ≥ 100 MeV protons on the associated flares and CMEs. Res. Astron. Astrophys. 17, 073. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, G., Lee, M.A.: 2019, Focused transport of solar energetic particles in interplanetary space and the formation of the anisotropic beam-like distribution of particles in the onset phase of large gradual events. Astrophys. J. 875, 116. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, J., Ko, Y.-K., Sui, L., Raymond, J.C., Stenborg, G.A., Jiang, Y., Zhao, S., Mancuso, S.: 2005, Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys. J. 622, 1251. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mavromichalaki, H., Papaioannou, A., Plainaki, C., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Papailiou, M., Eroshenko, E., Belov, A., Yanke, V., Flückiger, E.O., Bütikofer, R., Parisi, M., Storini, M., Klein, K.-L., Fuller, N., Steigies, C.T., Rother, O.M., Heber, B., Wimmer-Schweingruber, R.F., Kudela, K., Strharsky, I., Langer, R., Usoskin, I., Ibragimov, A., Chilingaryan, A., Hovsepyan, G., Reymers, A., Yeghikyan, A., Kryakunova, O., Dryn, E., Nikolayevskiy, N., Dorman, L., Pustil’Nik, L.: 2011, Applications and usage of the real-time neutron monitor database. Adv. Space Res. 47, 2210. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mavromichalaki, H., Paschalis, P., Gerontidou, M., Papailiou, M.-C., Paouris, E., Tezari, A., Lingri, D., Livada, M., Stassinakis, A.N., Crosby, N., Dierckxsens, M.: 2022, The updated version of the A.Ne.Mo.S. GLE alert system: the case of the ground-level enhancement GLE73 on 28 October 2021. Universe 8, 378. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mewaldt, R.A., Looper, M.D., Cohen, C.M.S., Haggerty, D.K., Labrador, A.W., Leske, R.A., Mason, G.M., Mazur, J.E., von Rosenvinge, T.T.: 2012, Energy spectra, composition, and other properties of ground-level events during Solar Cycle 23. Space Sci. Rev. 171, 97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Meyer, P., Parker, E.N., Simpson, J.A.: 1956, Solar Cosmic Rays of February, 1956 and their propagation through interplanetary space. Phys. Rev. 104, 768. DOI. ADS.

    Article  ADS  Google Scholar 

  • Michalek, G.: 2009, Two types of flare-associated coronal mass ejections. Astron. Astrophys. 494, 263. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mishev, A., Jiggens, P.: 2019, Preface to measurement, specification and forecasting of the Solar Energetic Particle (SEP) environment and Ground Level Enhancements (GLEs). J. Space Weather Space Clim. 9, E1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mishev, A.L., Kocharov, L.G., Koldobskiy, S.A., Larsen, N., Riihonen, E., Vainio, R., Usoskin, I.G.: 2022, High-resolution spectral and anisotropy characteristics of solar protons during the GLE N73 on 28 October 2021 derived with neutron-monitor data analysis. Solar Phys. 297, 88. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mishev, A., Usoskin, I., Raukunen, O., Paassilta, M., Valtonen, E., Kocharov, L., Vainio, R.: 2018, First Analysis of Ground-Level Enhancement (GLE) 72 on 10 September 2017: spectral and anisotropy characteristics. Solar Phys. 293, 136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nindos, A., Aurass, H., Klein, K.-L., Trottet, G.: 2008, Radio emission of flares and coronal mass ejections. Invited review. Solar Phys. 253, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Papaioannou, A., Kouloumvakos, A., Mishev, A., Vainio, R., Usoskin, I., Herbst, K., Rouillard, A.P., Anastasiadis, A., Gieseler, J., Wimmer-Schweingruber, R., Kühl, P.: 2022, The first ground-level enhancement of solar cycle 25 on 28 October 2021. Astron. Astrophys. 660, L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Perez-Peraza, J.A., Márquez-Adame, J.C., Caballero-Lopez, R.A., Manzano Islas, R.R.: 2020, Spectra of the two official GLEs of solar cycle 24. Adv. Space Res. 65, 663. DOI. ADS.

    Article  ADS  Google Scholar 

  • Petrosian, V.: 2016, Particle acceleration in solar flares and associated CME shocks. Astrophys. J. 830, 28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 1995, Solar energetic particles: a paradigm shift. Rev. Geophys. 33, 585. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sandroos, A., Vainio, R.: 2007, Simulation results for heavy ion spectral variability in large gradual solar energetic particle events. Astrophys. J. Lett. 662, L127. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schmit, T.J., Griffith, P., Gunshor, M.M., Daniels, J.M., Goodman, S.J., Lebair, W.J.: 2017, A closer look at the ABI on the GOES-R series. Bull. Am. Meteorol. Soc. 98, 681. DOI. ADS.

    Article  ADS  Google Scholar 

  • Trottet, G., Samwel, S., Klein, K.-L., Dudok de Wit, T., Miteva, R.: 2015, Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Solar Phys. 290, 819. DOI. ADS.

    Article  ADS  Google Scholar 

  • Velinov, P.I.Y.: 2022, Major X-class solar flare from Earth-facing active region AR 12887 on October 28, 2021 and first cosmic ray GLE 73 in solar cycle 25. C. R. Acad. Bulg. Sci. 75, 248. DOI.

    Article  Google Scholar 

  • Wang, H., Qiu, J., Jing, J., Zhang, H.: 2003, Study of ribbon separation of a flare associated with a quiescent filament eruption. Astrophys. J. 593, 564. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xie, H., Mäkelä, P., Gopalswamy, N., St. Cyr, O.C.: 2016, Energy dependence of SEP electron and proton onset times. J. Geophys. Res. 121, 6168. DOI. ADS.

    Article  Google Scholar 

  • Xu, Z.G., Li, C., Ding, M.D.: 2017, Observations of a coronal shock wave and the production of solar energetic particles. Astrophys. J. 840, 38. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P.: 2006, A statistical study of main and residual accelerations of coronal mass ejections. Astrophys. J. 649, 1100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Vourlidas, A.: 2004, A study of the kinematic evolution of coronal mass ejections. Astrophys. J. 604, 420. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Y., Jia, H., Wang, H.: 2021, Research on the peak energy spectrum of the solar cosmic ray ground level enhancement event (GLE72). Acta Phys. Sin. 70, 109601. DOI.

    Article  Google Scholar 

  • Zhang, Y., Jia, H., Feng, Y., Wang, C.: 2022, Study of temporal profile and flux variation of GLE events during Solar Cycles 23 and 24 using GOES data. Solar Phys. 297, 75. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhao, M.-X., Le, G.-M.: 2020, A study on the dynamic spectral indices for SEP events on 2000 July 14 and 2005 January 20. Res. Astron. Astrophys. 20, 037. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the authorities of the GOES, ACE, Wind, and NMDB for making their data available online.

Funding

This work is jointly funded by the National Key R&D Program of China National (Grant No. 2018YFA0404202) and the National Natural Science Foundation of China (Grant No. 12147208). W.Q. Gan acknowledges the grant (ref.no.: 12233012 and 11921003) of the National Natural Science Foundation of China and another grant (ref.no: XDA15052200) of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors have made contributions to this article, critically revised and approved the final version, and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Kazi A. Firoz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Firoz, K.A., Gan, W. et al. A Study of the Possible Mechanism of the Ground Level Enhancement on 28 October 2021. Sol Phys 297, 155 (2022). https://doi.org/10.1007/s11207-022-02087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02087-1

Keywords

Navigation