Skip to main content
Log in

First Analysis of Ground-Level Enhancement (GLE) 72 on 10 September 2017: Spectral and Anisotropy Characteristics

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Using data obtained with neutron monitors and space-borne instruments, we analyzed the second ground-level enhancement (GLE) of Solar Cycle 24, namely the event of 10 September 2017 (GLE 72), and derived the spectral and angular characteristics of associated GLE particles. We employed a new neutron-monitor yield function and a recently proposed model based on an optimization procedure. The method consists of simulating particle propagation in a model magnetosphere in order to derive the cutoff rigidity and neutron-monitor asymptotic directions. Subsequently, the rigidity spectrum and anisotropy of GLE particles are obtained in their dynamical evolution during the event on the basis of an inverse-problem solution. The derived angular distribution and spectra are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Agueda, N., Vainio, R., Sanahuja, B.: 2012, A database of \({>}\,20~\mbox{keV}\) electron Green’s functions of interplanetary transport at 1 AU. Astrophys. J. Suppl. 202, 18. DOI .

    Article  ADS  Google Scholar 

  • Aschwanden, M.: 2012, GeV particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci. Rev. 171(1–4), 3. DOI .

    Article  ADS  Google Scholar 

  • Bieber, J.W., Evenson, P.A.: 1995, Spaceship Earth – an optimized network of neutron monitors. In: Taroni, A. (ed.) Proc. 24th ICRC 4 1316. www.researchgate.net/publication/234316437 .

    Google Scholar 

  • Bieber, J.W., Clem, J., Evenson, P., Pyle, R., Sáiz, A., Ruffolo, D.: 2013, Giant ground level enhancement of relativistic solar protons on 2005 January 20. I. Spaceship Earth observations. Astrophys. J. 771(2), 92. DOI .

    Article  ADS  Google Scholar 

  • Bombardieri, D.J., Duldig, M.L., Michael, K.J., Humble, J.E.: 2006, Relativistic proton production during the 2000 July 14 solar event: The case for multiple source mechanisms. Astrophys. J. 644(1), 565. DOI .

    Article  ADS  Google Scholar 

  • Bütikofer, R., Flückiger, E.O., Desorgher, L., Moser, M.R., Pirard, B.: 2009, The solar cosmic ray ground-level enhancements on 20 January 2005 and 13 December 2006. Adv. Space Res. 43(4), 499. DOI .

    Article  ADS  Google Scholar 

  • Caballero-Lopez, R.A.: 2016, An estimation of the yield and response functions for the mini neutron monitor. J. Geophys. Res. 121(8), 7461. DOI .

    Article  Google Scholar 

  • Cliver, E.W., Kahler, S.W., Reames, D.V.: 2004, Coronal shocks and solar energetic proton events. Astrophys. J. 605, 902. DOI

    Article  ADS  Google Scholar 

  • Cooke, D.J., Humble, J.E., Shea, M.A., Smart, D.F., Lund, N., Rasmussen, I.L., Byrnak, B., Goret, P., Petrou, N.: 1991, On cosmic-ray cutoff terminology. Nuovo Cimento C 14(3), 213. DOI .

    Article  ADS  Google Scholar 

  • Cramp, J.L., Humble, J.E., Duldig, M.L.: 1995, The cosmic ray ground-level enhancement of 24 October 1989. Proc. Astron. Soc. Austral. 11, 28.

    Article  ADS  Google Scholar 

  • Cramp, J.L., Duldig, M.L., Flückiger, E.O., Humble, J.E., Shea, M.A., Smart, D.F.: 1997, The October 22, 1989, solar cosmic enhancement: Ray an analysis the anisotropy spectral characteristics. J. Geophys. Res. 102(A11), 24237. DOI .

    Article  ADS  Google Scholar 

  • Debrunner, H., Flückiger, E.O., Grädel, H., Lockwood, J.A., McGuire, R.E.: 1988, Observations related to the acceleration, injection, and interplanetary propagation of energetic protons during the solar cosmic ray event on February 16, 1984. J. Geophys. Res. 93(A7), 7206.

    Article  ADS  Google Scholar 

  • Dennis, J.E., Schnabel, R.B.: 1996, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs. 978-0-898713-64-0.

    Book  Google Scholar 

  • Desai, M.I., Burgess, D.: 2008, Particle acceleration at coronal mass ejection-driven interplanetary shocks and the Earth’s bow shock. J. Geophys. Res. 113(A9), A00B006. DOI .

    Article  Google Scholar 

  • Desai, M., Giacalone, J.: 2016, Large gradual solar energetic particle events. Living Rev. Solar Phys. 13, 3. DOI .

    Article  ADS  Google Scholar 

  • Desorgher, L., Flückiger, E.O., Gurtner, M., Moser, M.R., Bütikofer, R.: 2005, A Geant 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int. J. Mod. Phys. A 20, 6802. DOI .

    Article  ADS  Google Scholar 

  • Dorman, L.: 2004, Cosmic Rays in the Earth’s Atmosphere and Underground, Kluwer, Dordrecht. 1-4020-2071-6.

    Book  Google Scholar 

  • Drake, J.F., Cassak, P.A., Shay, M.A., Swisdak, M., Quataert, E.: 2009, A magnetic reconnection mechanism for ion acceleration and abundance enhancements in impulsive flares. Astrophys. J. 700, L16. DOI .

    Article  ADS  Google Scholar 

  • Gil, A., Usoskin, I.G., Kovaltsov, G.A., Mishev, A.L., Corti, C., Bindi, V.: 2015, Can we properly model the neutron monitor count rate? J. Geophys. Res. 120, 7172. DOI .

    Article  Google Scholar 

  • Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Usoskin, I.G.: 2012, Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. 171(1–4), 23. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P.A., Yashiro, S.: 2014, Major solar eruptions and high-energy particle events during solar cycle 24. Earth Planets Space 66(1), 104. DOI . Cited by 32.

    Article  ADS  Google Scholar 

  • Hatton, C.: 1971, The neutron monitor. In: Progress in Elementary Particle and Cosmic-ray Physics X, North-Holland, Amsterdam. Chapter 1.

    Google Scholar 

  • Himmelblau, D.M.: 1972, Applied Nonlinear Programming, McGraw-Hill, New York. 978-0070289215.

    MATH  Google Scholar 

  • Humble, J.E., Duldig, M.L., Smart, D.F., Shea, M.A.: 1991, Detection of 0.5 – 15 GeV solar protons on 29 September 1989 at Australian stations. Geophys. Res. Lett. 18(4), 737. DOI .

    Article  ADS  Google Scholar 

  • Kallenrode, M.-B., Cliver, E.W., Wibberenz, G.: 1992, Composition and azimuthal spread of solar energetic particles from impulsive and gradual flares. Astrophys. J. 391(1), 370.

    Article  ADS  Google Scholar 

  • Kocharov, L., Pohjolainen, S., Mishev, A., Reiner, M.J., Lee, J., Laitinen, T., Didkovsky, L.V., Pizzo, V.J., Kim, R., Klassen, A., Karlicky, M., Cho, K.-S., Gary, D.E., Usoskin, I., Valtonen, E., Vainio, R.: 2017, Investigating the origins of two extreme solar particle events: Proton source profile and associated electromagnetic emissions. Astrophys. J. 839(2), 79. DOI .

    Article  ADS  Google Scholar 

  • Kudela, K., Bučik, R., Bobik, P.: 2008, On transmissivity of low energy cosmic rays in disturbed magnetosphere. Adv. Space Res. 42(7), 1300.

    Article  ADS  Google Scholar 

  • Kudela, K., Usoskin, I.: 2004, On magnetospheric transmissivity of cosmic rays. Czechoslov. J. Phys. 54(2), 239.

    Article  ADS  Google Scholar 

  • Langel, R.A.: 1987, Main field in geomagnetism. In: Jacobs, J.A. (ed.) Geomagnetism, Academic Press, London, 249. Chapter 1.

    Google Scholar 

  • Lara, A., Borgazzi, A., Caballero-Lopez, R.: 2016, Altitude survey of the galactic cosmic ray flux with a mini neutron monitor. Adv. Space Res. 58(7), 1441. DOI .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275(1–2), 17. DOI .

    Article  ADS  Google Scholar 

  • Levenberg, K.: 1944, A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164.

    Article  MathSciNet  Google Scholar 

  • Li, G., Moore, R., Mewaldt, R.A., Zhao, L., Labrador, A.W.: 2012, A twin-CME scenario for ground level enhancement events. Space Sci. Rev. 171(1–4), 141.

    Article  ADS  Google Scholar 

  • Lockwood, J.A., Debrunner, H., Flückiger, E.O.: 1990, Indications for diffusive coronal shock acceleration of protons in selected solar cosmic ray events. J. Geophys. Res. 95(A4), 4187.

    Article  ADS  Google Scholar 

  • Mangeard, P.-S., Ruffolo, D., Sáiz, A., Nuntiyakul, W., Bieber, J.W., Clem, J., Evenson, P., Pyle, R., Duldig, M.L., Humble, J.E.: 2016, Dependence of the neutron monitor count rate and time delay distribution on the rigidity spectrum of primary cosmic rays. J. Geophys. Res. 121(12), 11620. DOI .

    Article  Google Scholar 

  • Marquardt, D.: 1963, An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431.

    Article  MathSciNet  Google Scholar 

  • Mavrodiev, S.C., Mishev, A.L., Stamenov, J.N.: 2004, A method for energy estimation and mass composition determination of primary cosmic rays at the Chacaltaya observation level based on the atmospheric Cherenkov light technique. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 530(3), 359. DOI .

    Article  ADS  Google Scholar 

  • Mavromichalaki, H., Papaioannou, A., Plainaki, C., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Papailiou, M., Eroshenko, E., Belov, A., Yanke, V., Flückiger, E.O., Bütikofer, R., Parisi, M., Storini, M., Klein, K.-L., Fuller, N., Steigies, C.T., Rother, O.M., Heber, B., Wimmer-Schweingruber, R.F., Kudela, K., Strharsky, I., Langer, R., Usoskin, I., Ibragimov, A., Chilingaryan, A., Hovsepyan, G., Reymers, A., Yeghikyan, A., Kryakunova, O., Dryn, E., Nikolayevskiy, N., Dorman, L., Pustil’Nik, L.: 2011, Applications and usage of the real-time neutron monitor database. Adv. Space Res. 47, 2210.

    Article  ADS  Google Scholar 

  • Mishev, A.L., Kocharov, L.G., Usoskin, I.G.: 2014, Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J. Geophys. Res. 119, 670. DOI .

    Article  Google Scholar 

  • Mishev, A., Poluianov, S., Usoskin, I.: 2017, Assessment of spectral and angular characteristics of sub-GLE events using the global neutron monitor network. J. Space Weather Space Clim. 7, A28. DOI .

    Article  ADS  Google Scholar 

  • Mishev, A., Usoskin, I.: 2016a, Analysis of the ground level enhancements on 14 July 2000 and on 13 December 2006 using neutron monitor data. Solar Phys. 291, 1225. DOI .

    Article  ADS  Google Scholar 

  • Mishev, A., Usoskin, I.: 2016b, Erratum to: Analysis of the ground level enhancements on 14 July 2000 and on 13 December 2006 using neutron monitor data. Solar Phys. 291, 1579. DOI .

    Article  ADS  Google Scholar 

  • Mishev, A., Usoskin, I., Kocharov, L.: 2017, Using global neutron monitor network data for GLE analysis: Recent results. In: Proc. 35th ICRC, 147. DOI .

    Chapter  Google Scholar 

  • Mishev, A., Usoskin, I., Kovaltsov, G.: 2013, Neutron monitor yield function: New improved computations. J. Geophys. Res. 118, 2783. DOI .

    Article  Google Scholar 

  • Mishev, A., Usoskin, I., Kovaltsov, G.: 2016, New neutron monitor yield function computed at several altitudes above the sea level: Application for GLE analysis. In: Proc. 34th ICRC, 159. DOI .

    Chapter  Google Scholar 

  • Moraal, H., McCracken, K.G.: 2012, The time structure of ground level enhancements in solar cycle 23. Space Sci. Rev. 171(1–4), 85.

    Article  ADS  Google Scholar 

  • Nevalainen, J., Usoskin, I., Mishev, A.: 2013, Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations. Adv. Space Res. 52(1), 22. DOI .

    Article  ADS  Google Scholar 

  • Papaioannou, A., Souvatzoglou, G., Paschalis, P., Gerontidou, M., Mavromichalaki, H.: 2014, The first ground-level enhancement of solar cycle 24 on 17 May 2012 and its real-time detection. Solar Phys. 289, 423. DOI .

    Article  ADS  Google Scholar 

  • Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90(3–4), 413.

    Article  ADS  Google Scholar 

  • Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175(1–4), 53. DOI .

    Article  ADS  Google Scholar 

  • Ruffolo, D., Tooprakai, P., Rujiwarodom, M., Khumlumlert, T., Wechakama, M., Bieber, J.W., Evenson, P.A., Pyle, K.R.: 2006, Relativistic solar protons on 1989 October 22: Injection and transport along both legs of a closed interplanetary magnetic loop. Astrophys. J. 639(2), 1186. DOI .

    Article  ADS  Google Scholar 

  • Shea, M.A., Smart, D.F.: 1982, Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci. Rev. 32, 251.

    ADS  Google Scholar 

  • Shea, M.A., Smart, D.F.: 1990, A summary of major solar proton events. Solar Phys. 127, 297. DOI . ADS .

    Article  ADS  Google Scholar 

  • Simpson, J., Fonger, W., Treiman, S.: 1953, Cosmic radiation intensity-time variation and their origin. I. Neutron intensity variation method and meteorological factors. Phys. Rev. 90, 934.

    Article  ADS  Google Scholar 

  • Souvatzoglou, G., Papaioannou, A., Mavromichalaki, H., Dimitroulakos, J., Sarlanis, C.: 2014, Optimizing the real-time ground level enhancement alert system based on neutron monitor measurements: Introducing GLE Alert Plus. Space Weather 12(11), 633. DOI .

    Article  ADS  Google Scholar 

  • Stoker, P.H., Dorman, L.I., Clem, J.M.: 2000, Neutron monitor design improvements. Space Sci. Rev. 93(1–2), 361.

    Article  ADS  Google Scholar 

  • Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: 1995, Numerical Methods for Solving Ill-Posed Problems, Kluwer, Dordrecht. 978-90-481-4583-6.

    Book  Google Scholar 

  • Tsyganenko, N.A.: 1989, A magnetospheric magnetic field model with a warped tail current sheet. Planet. Space Sci. 37(1), 5.

    Article  ADS  Google Scholar 

  • Tylka, A., Dietrich, W.: 2009, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. In: Proc. of 31th ICRC, 0273.

    Google Scholar 

  • Vainio, R., Valtonen, E., Heber, B., Malandraki, O.E., Papaioannou, A., Klein, K.-L., Afanasiev, A., Agueda, N., Aurass, H., Battarbee, M., Braune, S., Dröge, W., Ganse, U., Hamadache, C., Heynderickx, D., Huttunen-Heikinmaa, K., Kiener, J., Kilian, P., Kopp, A., Kouloumvakos, A., Maisala, S., Mishev, A., Miteva, R., Nindos, A., Oittinen, T., Raukunen, O., Riihonen, E., Rodríguez-Gasén, R., Saloniemi, O., Sanahuja, B., Scherer, R., Spanier, F., Tatischeff, V., Tziotziou, K., Usoskin, I.G., Vilmer, N.: 2013, The first SEPserver event catalogue \({\sim}\,68\mbox{-MeV}\) solar proton events observed at 1 AU in 1996 – 2010. J. Space Weather Space Clim. 3, A12. DOI .

    Article  Google Scholar 

  • Vainio, R., Raukunen, O., Tylka, A.J., Dietrich, W.F., Afanasiev, A.: 2017, Why is solar cycle 24 an inefficient producer of high-energy particle events? Astron. Astrophys. 604, A47. DOI .

    Article  ADS  Google Scholar 

  • Vashenyuk, E.V., Balabin, Y.V., Perez-Peraza, J., Gallegos-Cruz, A., Miroshnichenko, L.I.: 2006, Some features of the sources of relativistic particles at the Sun in the solar cycles 21 – 23. Adv. Space Res. 38(3), 411.

    Article  ADS  Google Scholar 

  • Vashenyuk, E.V., Balabin, Y.V., Gvozdevsky, B.B., Schur, L.I.: 2008, Characteristics of relativistic solar cosmic rays during the event of December 13, 2006. Geomagn. Aeron. 48(2), 149.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Finland (project No. 272157, Center of Excellence ReSoLVE and project No. 267186). Operation of the DOMC/DOMB NM was possible due to support of the French–Italian Concordia Station (IPEV program n903 and PNRA Project LTCPAA PNRA14 00091), projects CRIPA and CRIPA-X No. 304435 and Finnish Antarctic Research Program (FINNARP). We acknowledge NMDB and all of the colleagues and PIs from the neutron monitor stations who kindly provided the data used in this analysis, namely Alma Ata, Apatity, Athens, Baksan, Dome C, Dourbes, Forth Smith, Inuvik, Irkutsk, Jang Bogo, Jungfraujoch, Kerguelen, Lomnicky Štit, Magadan, Mawson, Mexico City, Moscow, Nain, Newark, Oulu, Peawanuck, Potchefstroom, Rome, South Pole, Terre Adelie, Thule, Tixie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mishev.

Ethics declarations

Disclosure and Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishev, A., Usoskin, I., Raukunen, O. et al. First Analysis of Ground-Level Enhancement (GLE) 72 on 10 September 2017: Spectral and Anisotropy Characteristics. Sol Phys 293, 136 (2018). https://doi.org/10.1007/s11207-018-1354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1354-x

Keywords

Navigation