Skip to main content
Log in

Extreme-Ultraviolet Wave and Accompanying Loop Oscillations

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present the observations of an extreme-ultraviolet (EUV) wave, which originated from the active region (AR) NOAA 12887 on 28 October 2021, and its impact on neighboring loops. The event was observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite at various wavebands and by the Solar TErrestrial RElations Observatory-Ahead (STEREO-A) with its Extreme-Ultraviolet Imager (EUVI) and COR1 instruments with a different view angle from SDO. We show that the EUV-wave event consists of several waves as well as nonwave phenomena. The wave components include: the fast-mode part of the EUV wave event, creation of oscillations in nearby loops, and the appearance of wave trains. The nonwave component consists of stationary fronts. We analyze selected oscillating loops and find that the periods of these oscillations range from 230 – 549 s. Further, we compute the density ratio inside and outside the loops and the magnetic-field strength. The computed density ratio and magnetic field are found to be in the ranges of 1.08 – 2.92 and 5.75 – 8.79 G, respectively. Finally, by combining SDO and STEREO-A observations, we find that the observed EUV-wave component propagates ahead of the CME leading edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data Availability

The data sets analyzed during the current study are available at http://jsoc.stanford.edu/, https://stereo-ssc.nascom.nasa.gov/data.shtml, and https://cdaw.gsfc.nasa.gov/.

References

  • Andries, J., van Doorsselaere, T., Roberts, B., Verth, G., Verwichte, E., Erdélyi, R.: 2009, Coronal seismology by means of kink oscillation overtones. Space Sci. Rev. 149, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Anfinogentov, S.A., Nakariakov, V.M., Nisticò, G.: 2015, Decayless low-amplitude kink oscillations: a common phenomenon in the solar corona? Astron. Astrophys. 583, A136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Anfinogentov, S., Nisticò, G., Nakariakov, V.M.: 2013, Decay-less kink oscillations in coronal loops. Astron. Astrophys. 560, A107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Arregui, I., Oliver, R., Ballester, J.L.: 2018, Prominence oscillations. Living Rev. Solar Phys. 15, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Arregui, I., Terradas, J., Oliver, R., Ballester, J.L.: 2008, Damping of fast magnetohydrodynamic oscillations in quiescent filament threads. Astrophys. J. Lett. 682, L141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Asai, A., Ishii, T.T., Isobe, H., Kitai, R., Ichimoto, K., UeNo, S., Nagata, S., Morita, S., Nishida, K., Shiota, D., Oi, A., Akioka, M., Shibata, K.: 2012, First simultaneous observation of an H\(\alpha\) Moreton wave, EUV wave, and filament/prominence oscillations. Astrophys. J. Lett. 745, L18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Schrijver, C.J.: 2011, Coronal loop oscillations observed with atmospheric imaging assembly—kink mode with cross-sectional and density oscillations. Astrophys. J. 736, 102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., de Pontieu, B., Schrijver, C.J., Title, A.M.: 2002, Transverse oscillations in coronal loops observed with TRACE II. Measurements of geometric and physical parameters. Solar Phys. 206, 99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ballai, I., Erdélyi, R., Pintér, B.: 2005, On the nature of coronal EIT waves. Astrophys. J. Lett. 633, L145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ballai, I., Forgács-Dajka, E., Douglas, M.: 2011, Magnetoacoustic surface gravity waves at a spherical interface. Astron. Astrophys. 527, A12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Byrne, J.P., Long, D.M., Gallagher, P.T., Bloomfield, D.S., Maloney, S.A., McAteer, R.T.J., Morgan, H., Habbal, S.R.: 2013, Improved methods for determining the kinematics of coronal mass ejections and coronal waves. Astron. Astrophys. 557, A96. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carmichael, H.: 1964, A process for flares. NASA Spec. Publ. 50, 451. ADS.

    ADS  Google Scholar 

  • Chandra, R., Schmieder, B., Mandrini, C.H., Démoulin, P., Pariat, E., Török, T., Uddin, W.: 2011, Homologous flares and magnetic field topology in active region NOAA 10501 on 20 November 2003. Solar Phys. 269, 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chandra, R., Chen, P.F., Fulara, A., Srivastava, A.K., Uddin, W.: 2016, Peculiar stationary EUV wave fronts in the eruption on 2011 May 11. Astrophys. J. 822, 106. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chandra, R., Chen, P.F., Fulara, A., Srivastava, A.K., Uddin, W.: 2018, A study of a long duration B9 flare-CME event and associated shock. Adv. Space Res. 61, 705. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chandra, R., Démoulin, P., Devi, P., Joshi, R., Schmieder, B.: 2021, Filament eruption driving EUV loop contraction and then expansion above a stable filament. Astrophys. J. 922, 227. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F.: 2006, The relation between EIT waves and solar flares. Astrophys. J. Lett. 641, L153. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.: 2017, The continued debate on solar coronal EUV waves. Sci. China, Phys. Mech. Astron. 60, 29631. DOI. ADS.

    Article  Google Scholar 

  • Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622, 1202. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F., Wu, Y.: 2011, First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations. Astrophys. J. Lett. 732, L20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, L99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, P.F., Fang, C., Chandra, R., Srivastava, A.K.: 2016, Can a fast-mode EUV wave generate a stationary front? Solar Phys. 291, 3195. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Zhang, J., Kliem, B., Török, T., Xing, C., Zhou, Z.J., Inhester, B., Ding, M.D.: 2020, Initiation and early kinematic evolution of solar eruptions. Astrophys. J. 894, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., Boerner, P., Schrijver, C.J., Testa, P., Chen, F., Peter, H., Malanushenko, A.: 2015, Thermal diagnostics with the atmospheric imaging assembly on board the solar dynamics observatory: a validated method for differential emission measure inversions. Astrophys. J. 807, 143. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cunha-Silva, R.D., Fernandes, F.C.R., Selhorst, C.L.: 2015, Solar type II radio bursts associated with CME expansions as shown by EUV waves. Astron. Astrophys. 578, A38. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cunha-Silva, R.D., Selhorst, C.L., Fernandes, F.C.R., Oliveira e Silva, A.J.: 2018, Well-defined EUV wave associated with a CME-driven shock. Astron. Astrophys. 612, A100. DOI. ADS.

    Article  ADS  Google Scholar 

  • Delannée, C., Aulanier, G.: 1999, Cme associated with transequatorial loops and a bald patch flare. Solar Phys. 190, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Delannée, C., Hochedez, J.-F., Aulanier, G.: 2007, Stationary parts of an EIT and Moreton wave: a topological model. Astron. Astrophys. 465, 603. DOI. ADS.

    Article  ADS  Google Scholar 

  • Delannée, C., Török, T., Aulanier, G., Hochedez, J.-F.: 2008, A new model for propagating parts of EIT waves: a current shell in a CME. Solar Phys. 247, 123. DOI. ADS.

    Article  ADS  Google Scholar 

  • Delannée, C., Artzner, G., Schmieder, B., Parenti, S.: 2014, Time evolution of the altitude of an observed coronal wave. Solar Phys. 289, 2565. DOI. ADS.

    Article  ADS  Google Scholar 

  • Démoulin, P., Aulanier, G.: 2010, Criteria for flux rope eruption: non-equilibrium versus torus instability. Astrophys. J. 718, 1388. DOI. ADS.

    Article  ADS  Google Scholar 

  • Devi, P., Démoulin, P., Chandra, R., Joshi, R., Schmieder, B., Joshi, B.: 2021, Observations of a prominence eruption and loop contraction. Astron. Astrophys. 647, A85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Devi, P., Chandra, R., Joshi, R., Chen, P.F., Schmieder, B., Uddin, W., Moon, Y.-J.: 2022, Prominence oscillations activated by an EUV wave. arXiv.

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Edwin, P.M., Roberts, B.: 1983, Wave propagation in a magnetic cylinder. Solar Phys. 88, 179. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fulara, A., Chandra, R., Chen, P.F., Zhelyazkov, I., Srivastava, A.K., Uddin, W.: 2019, Kinematics and energetics of the EUV waves on 11 April 2013. Solar Phys. 294, 56. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gilbert, H.R., Daou, A.G., Young, D., Tripathi, D., Alexander, D.: 2008, The filament-Moreton wave interaction of 2006 December 6. Astrophys. J. 685, 629. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goossens, M., Andries, J., Aschwanden, M.J.: 2002, Coronal loop oscillations. An interpretation in terms of resonant absorption of quasi-mode kink oscillations. Astron. Astrophys. 394, L39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Temmer, M., Davila, J., Thompson, W.T., Jones, S., McAteer, R.T.J., Wuelser, J.-P., Freeland, S., Howard, R.A.: 2009, EUV wave reflection from a coronal hole. Astrophys. J. Lett. 691, L123. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Mäkelä, P., Yashiro, S., Akiyama, S., Uddin, W., Srivastava, A.K., Joshi, N.C., Chandra, R., Manoharan, P.K., Mahalakshmi, K., Dwivedi, V.C., Jain, R., Awasthi, A.K., Nitta, N.V., Aschwanden, M.J., Choudhary, D.P.: 2013, Height of shock formation in the solar corona inferred from observations of type II radio bursts and coronal mass ejections. Adv. Space Res. 51, 1981. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosain, S., Foullon, C.: 2012, Dual trigger of transverse oscillations in a prominence by EUV fast and slow coronal waves: SDO/AIA and STEREO/EUVI observations. Astrophys. J. 761, 103. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guo, Y., Erdélyi, R., Srivastava, A.K., Hao, Q., Cheng, X., Chen, P.F., Ding, M.D., Dwivedi, B.N.: 2015, Magnetohydrodynamic seismology of a coronal loop system by the first two modes of standing kink waves. Astrophys. J. 799, 151. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hershaw, J., Foullon, C., Nakariakov, V.M., Verwichte, E.: 2011, Damped large amplitude transverse oscillations in an EUV solar prominence, triggered by large-scale transient coronal waves. Astron. Astrophys. 531, A53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. I: Evaporating flare model. Solar Phys. 34, 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hou, Z., Tian, H., Wang, J.-S., Zhang, X., Song, Q., Zheng, R., Chen, H., Chen, B., Bai, X., Chen, Y., He, L., Song, K., Zhang, P., Hu, X., Dun, J., Zong, W., Song, Y., Xu, Y., Tan, G.: 2022, Three-dimensional propagation of the global extreme-ultraviolet wave associated with a solar eruption on 2021 October 28. Astrophys. J. 928, 98. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hudson, H.S., Khan, J.I., Lemen, J.R., Nitta, N.V., Uchida, Y.: 2003, Soft X-ray observation of a large-scale coronal wave and its exciter. Solar Phys. 212, 121. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hyder, C.L.: 1966, Winking filaments and prominence and coronal magnetic fields. Z. Astrophys. 63, 78. ADS.

    ADS  Google Scholar 

  • Isobe, H., Tripathi, D.: 2006, Large amplitude oscillation of a polar crown filament in the pre-eruption phase. Astron. Astrophys. 449, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jing, J., Lee, J., Spirock, T.J., Wang, H.: 2006, Periodic motion along solar filaments. Solar Phys. 236, 97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kienreich, I.W., Temmer, M., Veronig, A.M.: 2009, STEREO quadrature observations of the three-dimensional structure and driver of a global coronal wave. Astrophys. J. Lett. 703, L118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klein, K.L., Musset, S., Vilmer, N., Briand, C., Krucker, S., Battaglia, A.F., Dresing, N., Palmroos, C., Gary, D.E.: 2022, The relativistic solar particle event on 28 October 2021: evidence of particle acceleration within and escape from the solar corona. Astron. Astrophys. 663, A173. DOI. ADS.

    Article  Google Scholar 

  • Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kwon, R.-Y., Vourlidas, A.: 2017, Investigating the wave nature of the outer envelope of halo coronal mass ejections. Astrophys. J. 836, 246. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kwon, R.-Y., Zhang, J., Olmedo, O.: 2014, New insights into the physical nature of coronal mass ejections and associated shock waves within the framework of the three-dimensional structure. Astrophys. J. 794, 148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, W., Ofman, L., Nitta, N.V., Aschwanden, M.J., Schrijver, C.J., Title, A.M., Tarbell, T.D.: 2012, Quasi-periodic fast-mode wave trains within a global EUV wave and sequential transverse oscillations detected by SDO/AIA. Astrophys. J. 753, 52. DOI. ADS.

    Article  ADS  Google Scholar 

  • Long, D.M., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2008, The kinematics of a globally propagating disturbance in the solar corona. Astrophys. J. Lett. 680, L81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Luna, M., Knizhnik, K., Muglach, K., Karpen, J., Gilbert, H., Kucera, T.A., Uritsky, V.: 2014, Observations and implications of large-amplitude longitudinal oscillations in a solar filament. Astrophys. J. 785, 79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ma, S., Raymond, J.C., Golub, L., Lin, J., Chen, H., Grigis, P., Testa, P., Long, D.: 2011, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738, 160. DOI. ADS.

    Article  ADS  Google Scholar 

  • Miao, Y.H., Liu, Y., Shen, Y.D., Li, H.B., Abidin, Z.Z., Elmhamdi, A., Kordi, A.S.: 2019, A quasi-periodic propagating wave and extreme-ultraviolet waves excited simultaneously in a solar eruption event. Astrophys. J. Lett. 871, L2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Morton, R.J., Erdélyi, R.: 2009, Transverse oscillations of a cooling coronal loop. Astrophys. J. 707, 750. DOI. ADS.

    Article  ADS  Google Scholar 

  • Morton, R.J., Erdélyi, R.: 2010, Application of the theory of damping of kink oscillations by radiative cooling of coronal loop plasma. Astron. Astrophys. 519, A43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Morton, R.J., Hood, A.W., Erdélyi, R.: 2010, Propagating magneto-hydrodynamic waves in a cooling homogenous coronal plasma. Astron. Astrophys. 512, A23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Moses, D., Clette, F., Delaboudinière, J.-P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Newmark, J., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., van Dessel, E.L., Gabryl, J.R.: 1997, EIT observations of the extreme ultraviolet sun. Solar Phys. 175, 571. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L.: 2001, Determination of the coronal magnetic field by coronal loop oscillations. Astron. Astrophys. 372, L53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: 1999a, TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: 1999b, TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Anfinogentov, S.A., Antolin, P., Jain, R., Kolotkov, D.Y., Kupriyanova, E.G., Li, D., Magyar, N., Nisticò, G., Pascoe, D.J., Srivastava, A.K., Terradas, J., Vasheghani Farahani, S., Verth, G., Yuan, D., Zimovets, I.V.: 2021, Kink oscillations of coronal loops. Space Sci. Rev. 217, 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nitta, N.V., Schrijver, C.J., Title, A.M., Liu, W.: 2013, Large-scale coronal propagating fronts in solar eruptions as observed by the atmospheric imaging assembly on board the solar dynamics observatory—an ensemble study. Astrophys. J. 776, 58. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ofman, L., Liu, W.: 2018, Quasi-periodic counter-propagating fast magnetosonic wave trains from neighboring flares: SDO/AIA observations and 3D MHD modeling. Astrophys. J. 860, 54. DOI. ADS.

    Article  ADS  Google Scholar 

  • Okamoto, T.J., Nakai, H., Keiyama, A., Narukage, N., UeNo, S., Kitai, R., Kurokawa, H., Shibata, K.: 2004, Filament oscillations and Moreton waves associated with EIT waves. Astrophys. J. 608, 1124. DOI. ADS.

    Article  ADS  Google Scholar 

  • Papaioannou, A., Kouloumvakos, A., Mishev, A., Vainio, R., Usoskin, I., Herbst, K., Rouillard, A.P., Anastasiadis, A., Gieseler, J., Wimmer-Schweingruber, R., Kühl, P.: 2022, The first ground-level enhancement of solar cycle 25 on 28 October 2021. Astron. Astrophys. 660, L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A.: 2009, “Extreme ultraviolet waves” are waves: first quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett. 700, L182. DOI. ADS.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A.: 2012, On the nature and genesis of EUV waves: a synthesis of observations from SOHO, STEREO, SDO, and Hinode (invited review). Solar Phys. 281, 187. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The solar dynamics observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pomoell, J., Vainio, R., Kissmann, R.: 2008, MHD modeling of coronal large-amplitude waves related to CME lift-off. Solar Phys. 253, 249. DOI. ADS.

    Article  ADS  Google Scholar 

  • Roberts, B., Edwin, P.M., Benz, A.O.: 1984, On coronal oscillations. Astrophys. J. 279, 857. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruderman, M.S., Roberts, B.: 2002, The damping of coronal loop oscillations. Astrophys. J. 577, 475. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schmidt, J.M., Ofman, L.: 2010, Global simulation of an extreme ultraviolet imaging telescope wave. Astrophys. J. 713, 1008. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schmieder, B., Aulanier, G.: 2012, What are the physical mechanisms of eruptions and CMEs? Adv. Space Res. 49, 1598. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schmieder, B., Démoulin, P., Aulanier, G.: 2013, Solar filament eruptions and their physical role in triggering coronal mass ejections. Adv. Space Res. 51, 1967. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Elmore, C., Kliem, B., Török, T., Title, A.M.: 2008, Observations and modeling of the early acceleration phase of erupting filaments involved in coronal mass ejections. Astrophys. J. 674, 586. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Aulanier, G., Title, A.M., Pariat, E., Delannée, C.: 2011, The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: interpreting the three-dimensional views from the solar dynamics observatory and STEREO guided by magnetohydrodynamic flux-rope modeling. Astrophys. J. 738, 167. DOI. ADS.

    Article  ADS  Google Scholar 

  • Seki, D., Otsuji, K., Ishii, T.T., Asai, A., Ichimoto, K.: 2021, Relationship between three-dimensional velocity of filament eruptions and CME association. Earth Planets Space 73, 58. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y., Su, J., Li, H., Zhao, R., Tian, Z., Ichimoto, K., Shibata, K.: 2013, Diffraction, refraction, and reflection of an extreme-ultraviolet wave observed during its interactions with remote active regions. Astrophys. J. Lett. 773, L33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Chen, P.F., Liu, Y.D., Shibata, K., Tang, Z., Liu, Y.: 2019, First unambiguous imaging of large-scale quasi-periodic extreme-ultraviolet wave or shock. Astrophys. J. 873, 22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, Y., Zhou, X., Duan, Y., Tang, Z., Zhou, C., Tan, S.: 2022, Coronal quasi-periodic fast-mode propagating wave trains. Solar Phys. 297, 20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Srivastava, A.K., Goossens, M.: 2013, X6.9-class flare-induced vertical kink oscillations in a large-scale plasma curtain as observed by the solar dynamics observatory/atmospheric imaging assembly. Astrophys. J. 777, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature 211, 695. DOI. ADS.

    Article  ADS  Google Scholar 

  • Su, W., Guo, Y., Erdélyi, R., Ning, Z.J., Ding, M.D., Cheng, X., Tan, B.L.: 2018a, Period increase and amplitude distribution of kink oscillation of coronal loop. Sci. Rep. 8, 4471. DOI. ADS.

    Article  ADS  Google Scholar 

  • Su, Y., Veronig, A.M., Hannah, I.G., Cheung, M.C.M., Dennis, B.R., Holman, G.D., Gan, W., Li, Y.: 2018b, Determination of differential emission measure from solar extreme ultraviolet images. Astrophys. J. Lett. 856, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A.: 2011, Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys. J. Suppl. 194, 33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Reynolds, B., Aurass, H., Gopalswamy, N., Gurman, J.B., Hudson, H.S., Martin, S.F., St. Cyr, O.C.: 2000, Observations of the 24 September 1997 coronal flare waves. Solar Phys. 193, 161. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, W.T., Davila, J.M., Fisher, R.R., Orwig, L.E., Mentzell, J.E., Hetherington, S.E., Derro, R.J., Federline, R.E., Clark, D.C., Chen, P.T.C., Tveekrem, J.L., Martino, A.J., Novello, J., Wesenberg, R.P., StCyr, O.C., Reginald, N.L., Howard, R.A., Mehalick, K.I., Hersh, M.J., Newman, M.D., Thomas, D.L., Card, G.L., Elmore, D.F.: 2003, COR1 inner coronagraph for STEREO-SECCHI. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, SPIE Conf. Ser. 4853, 1. DOI. ADS.

    Chapter  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. DOI. ADS.

    Article  ADS  Google Scholar 

  • Veronig, A.M., Temmer, M., Vršnak, B.: 2008, High-cadence observations of a global coronal wave by STEREO EUVI. Astrophys. J. Lett. 681, L113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verwichte, E., Van Doorsselaere, T., Foullon, C., White, R.S.: 2013, Coronal Alfvén speed determination: consistency between seismology using AIA/SDO transverse loop oscillations and magnetic extrapolation. Astrophys. J. 767, 16. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vršnak, B., Warmuth, A., Brajša, R., Hanslmeier, A.: 2002, Flare waves observed in Helium I 10 830 Å. A link between H\(\alpha\) Moreton and EIT waves. Astron. Astrophys. 394, 299. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vršnak, B., Veronig, A.M., Thalmann, J.K., Žic, T.: 2007, Large amplitude oscillatory motion along a solar filament. Astron. Astrophys. 471, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.M.: 2000, EIT waves and fast-mode propagation in the solar corona. Astrophys. J. Lett. 543, L89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Warmuth, A.: 2015, Large-scale globally propagating coronal waves. Living Rev. Solar Phys. 12, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wills-Davey, M.J., DeForest, C.E., Stenflo, J.O.: 2007, Are “EIT waves” fast-mode MHD waves? Astrophys. J. 664, 556. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wu, S.T., Zheng, H., Wang, S., Thompson, B.J., Plunkett, S.P., Zhao, X.P., Dryer, M.: 2001, Three-dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope. J. Geophys. Res. 106, 25089. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Chen, J.L., Li, S.T., Lu, L., Li, D.: 2022, Transverse coronal-loop oscillations induced by the non-radial eruption of a magnetic flux rope. Solar Phys. 297, 18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zheng, R.-S., Jiang, Y.-C., Yang, J.-Y., Hong, J.-C., Bi, Y., Yang, B., Yang, D.: 2013, Loop oscillations and an extreme ultraviolet wave associated with a micro-sigmoid eruption. Mon. Not. Roy. Astron. Soc. 431, 1359. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhou, X., Shen, Y., Su, J., Tang, Z., Zhou, C., Duan, Y., Tan, S.: 2021, CME-driven and flare-ignited fast magnetosonic waves detected in a solar eruption. Solar Phys. 296, 169. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhou, X., Shen, Y., Tang, Z., Zhou, C., Duan, Y., Tan, S.: 2022, Total reflection of a flare-driven quasi-periodic extreme ultraviolet wave train at a coronal hole boundary. Astron. Astrophys. 659, A164. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zimovets, I.V., Nakariakov, V.M.: 2015, Excitation of kink oscillations of coronal loops: statistical study. Astron. Astrophys. 577, A4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zong, W., Dai, Y.: 2017, Mode conversion of a solar extreme-ultraviolet wave over a coronal cavity. Astrophys. J. Lett. 834, L15. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the referee for the constructive comments and suggestions. The authors thank the open data policy of the SDO, STEREO, and SOHO instruments. We would like to thank Aaron Peat for reading the manuscript to improve the language. We thank the editor for helping during the editorial process. We made use of NASA’s Astrophysics Data System Bibliographic Services.

Funding

PD thanks the CSIR, New Delhi for the research fellowship. This research is supported by the Research Council of Norway through its Centres of Excellence scheme, project number 262622.

Author information

Authors and Affiliations

Authors

Contributions

PD did the data analysis and wrote the draft of the paper. RC, AKA, BS, and RJ wrote the substantial parts of the manuscript and contributed to the interpretation. All the authors did a careful proofreading of the text and references.

Corresponding author

Correspondence to Pooja Devi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below are the links to the electronic supplementary material.

(MP4 49.3 MB)

(MP4 6.4 MB)

(MP4 7.3 MB)

(MP4 2.6 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, P., Chandra, R., Awasthi, A.K. et al. Extreme-Ultraviolet Wave and Accompanying Loop Oscillations. Sol Phys 297, 153 (2022). https://doi.org/10.1007/s11207-022-02082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02082-6

Keywords

Navigation