Skip to main content
Log in

Transverse Coronal-Loop Oscillations Induced by the Non-radial Eruption of a Magnetic Flux Rope

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We investigate the transverse coronal-loop oscillations induced by the eruption of a prominence-carrying flux rope on 7 December 2012. The flux rope, originating from NOAA Active Region (AR) 11621, was observed in extreme-ultraviolet (EUV) wavelengths by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) spacecraft and in the H\(\alpha \) line center by the ground-based telescope at the Big Bear Solar Observatory (BBSO). The early evolution of the flux rope is divided into two steps: a slow-rise phase at a speed of ≈ 230 km s−1 and a fast-rise phase at a speed of ≈ 706 km s−1. The eruption generates a C5.8 flare and the onset of the fast rise is consistent with the hard X-ray (HXR) peak time of the flare. The embedded prominence has a lower speed of ≈ 452 km s−1. The eruption is significantly inclined from the local solar normal by ≈ 60, suggesting a typical non-radial eruption. During the early eruption of the flux rope, the nearby coronal loops are disturbed and experience independent kink-mode oscillations in the horizontal and vertical directions. The oscillation in the horizontal direction has an initial amplitude of ≈ 3.1 Mm, a period of ≈ 294 seconds, and a damping time of ≈ 645 seconds. It is most striking in 171 Å and lasts for three to four cycles. The oscillations in the vertical directions are observed mainly in 171, 193, and 211 Å. The initial amplitudes are in the range of 3.4 – 5.2 Mm, with an average value of 4.5 Mm. The periods are between 407 seconds and 441 seconds, with an average value of 423 seconds. The oscillations are damping and last for nearly four cycles. The damping times are in the range of 570 – 1012 seconds, with an average value of 741 seconds. Assuming a semi-circular shape of the vertically oscillating loops, we calculate the loop lengths according to their heights. Using the observed periods, we carry out coronal seismology and estimate the internal Alfvén speeds (988 – 1145 km s−1) and the magnetic-field strengths (12 – 43 G) of the oscillating loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Amari, T., Canou, A., Aly, J.-J.: 2014, Characterizing and predicting the magnetic environment leading to solar eruptions. Nature 514, 465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Antolin, P., Verwichte, E.: 2011, Transverse oscillations of loops with coronal rain observed by Hinode/Solar Optical Telescope. Astrophys. J. 736, 121. DOI. ADS.

    Article  ADS  Google Scholar 

  • Antolin, P., De Moortel, I., Van Doorsselaere, T., Yokoyama, T.: 2017, Observational signatures of transverse magnetohydrodynamic waves and associated dynamic instabilities in coronal flux tubes. Astrophys. J. 836, 219. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., de Pontieu, B., Schrijver, C.J., Title, A.M.: 2002, Transverse oscillations in coronal loops observed with TRACE II. Measurements of geometric and physical parameters. Solar Phys. 206, 99. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: 2010, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bi, Y., Jiang, Y., Yang, J., Zheng, R., Hong, J., Li, H., Yang, D., Yang, B.: 2013, Analysis of the simultaneous rotation and non-radial propagation of an eruptive filament. Astrophys. J. 773, 162. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brown, J.C.: 1971, The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18, 489. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Canou, A., Amari, T., Bommier, V., Schmieder, B., Aulanier, G., Li, H.: 2009, Evidence for a pre-eruptive twisted flux rope using the themis vector magnetograph. Astrophys. J. Lett. 693, L27. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, J.: 2017, Physics of erupting solar flux ropes: coronal mass ejections (CMEs)—recent advances in theory and observation. Phys. Plasmas 24, 090501. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, F., Peter, H.: 2015, Using coronal seismology to estimate the magnetic field strength in a realistic coronal model. Astron. Astrophys. 581, A137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, H., Yang, J., Ji, K., Duan, Y.: 2019, Observational analysis on the early evolution of a CME flux rope: preflare reconnection and flux rope’s footpoint drift. Astrophys. J. 887, 118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Guo, Y., Ding, M.: 2017, Origin and structures of solar eruptions I: magnetic flux rope. Sci. China, Earth Sci. 60, 1383. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Zhang, J., Liu, Y., Ding, M.D.: 2011, Observing flux rope formation during the impulsive phase of a solar eruption. Astrophys. J. Lett. 732, L25. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Zhang, J., Saar, S.H., Ding, M.D.: 2012, Differential emission measure analysis of multiple structural components of coronal mass ejections in the inner corona. Astrophys. J. 761, 62. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Zhang, J., Ding, M.D., Liu, Y., Poomvises, W.: 2013, The driver of coronal mass ejections in the low corona: a flux rope. Astrophys. J. 763, 43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cheng, X., Ding, M.D., Zhang, J., Srivastava, A.K., Guo, Y., Chen, P.F., Sun, J.Q.: 2014, On the relationship between a hot-channel-like solar magnetic flux rope and its embedded prominence. Astrophys. J. Lett. 789, L35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dai, J., Zhang, Q.M., Su, Y.N., Ji, H.S.: 2021, Transverse oscillation of a coronal loop induced by a flare-related jet. Astron. Astrophys. 646, A12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dere, K.P., Brueckner, G.E., Howard, R.A., Michels, D.J., Delaboudinière, J.P.: 1999, LASCO and EIT observations of helical structure in coronal mass ejections. Astrophys. J. 516, 465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Devi, P., Démoulin, P., Chandra, R., Joshi, R., Schmieder, B., Joshi, B.: 2021, Observations of a prominence eruption and loop contraction. Astron. Astrophys. 647, A85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dudík, J., Polito, V., Janvier, M., Mulay, S.M., Karlický, M., Aulanier, G., Del Zanna, G., Dzifčáková, E., Mason, H.E., Schmieder, B.: 2016, Slipping magnetic reconnection, chromospheric evaporation, implosion, and precursors in the 2014 September 10 X1.6-class solar flare. Astrophys. J. 823, 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goddard, C.R., Nakariakov, V.M.: 2016, Dependence of kink oscillation damping on the amplitude. Astron. Astrophys. 590, L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goddard, C.R., Nisticò, G., Nakariakov, V.M., Zimovets, I.V.: 2016, A statistical study of decaying kink oscillations detected using SDO/AIA. Astron. Astrophys. 585, A137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goossens, M., Andries, J., Aschwanden, M.J.: 2002, Coronal loop oscillations. An interpretation in terms of resonant absorption of quasi-mode kink oscillations. Astron. Astrophys. 394, L39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosain, S.: 2012, Evidence for collapsing fields in the corona and photosphere during the 2011 February 15 X2.2 flare: SDO/AIA and HMI observations. Astrophys. J. 749, 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosain, S., Schmieder, B., Venkatakrishnan, P., Chandra, R., Artzner, G.: 2009, 3D evolution of a filament disappearance event observed by STEREO. Solar Phys. 259, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gou, T., Liu, R., Kliem, B., Wang, Y., Veronig, A.M.: 2019, The birth of a coronal mass ejection. Sci. Adv. 5, 7004. DOI. ADS.

    Article  ADS  Google Scholar 

  • Green, L.M., Kliem, B.: 2009, Flux rope formation preceding coronal mass ejection onset. Astrophys. J. Lett. 700, L83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Green, L.M., Kliem, B., Wallace, A.J.: 2011, Photospheric flux cancellation and associated flux rope formation and eruption. Astron. Astrophys. 526, A2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guo, J.H., Ni, Y.W., Qiu, Y., Zhong, Z., Guo, Y., Chen, P.F.: 2021a, Magnetic twists of solar filaments. Astrophys. J. 917, 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Guo, Y., Zhong, Z., Ding, M.D., Chen, P.F., Xia, C., Keppens, R.: 2021b, Data-constrained magnetohydrodynamic simulation of a long-duration eruptive flare. Astrophys. J. 919, 39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hannah, I.G., Kontar, E.P.: 2013, Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere. Astron. Astrophys. 553, A10. DOI. ADS.

    Article  ADS  Google Scholar 

  • He, W., Jiang, C., Zou, P., Duan, A., Feng, X., Zuo, P., Wang, Y.: 2020, Data-driven MHD simulation of the formation and initiation of a large-scale preflare magnetic flux rope in AR 12371. Astrophys. J. 892, 9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchère, F., Delaboudinière, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Inoue, S., Shiota, D., Bamba, Y., Park, S.-H.: 2018, Magnetohydrodynamic modeling of a solar eruption associated with an X9.3 flare observed in the active region 12673. Astrophys. J. 867, 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • James, A.W., Valori, G., Green, L.M., Liu, Y., Cheung, M.C.M., Guo, Y., van Driel-Gesztelyi, L.: 2018, An observationally constrained model of a flux rope that formed in the solar corona. Astrophys. J. Lett. 855, L16. DOI. ADS.

    Article  ADS  Google Scholar 

  • Janvier, M., Aulanier, G., Démoulin, P.: 2015, From coronal observations to MHD simulations, the building blocks for 3D models of solar flares (invited review). Solar Phys. 290, 3425. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiang, C., Zou, P., Feng, X., Hu, Q., Liu, R., Vemareddy, P., Duan, A., Zuo, P., Wang, Y., Wei, F.: 2018, Magnetohydrodynamic simulation of the X9.3 flare on 2017 September 6: evolving magnetic topology. Astrophys. J. 869, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Joshi, N.C., Magara, T., Inoue, S.: 2014, Formation of a compound flux rope by the merging of two filament channels, the associated dynamics, and its stability. Astrophys. J. 795, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kim, S., Nakariakov, V.M., Cho, K.-S.: 2014, Vertical kink oscillation of a magnetic flux rope structure in the solar corona. Astrophys. J. Lett. 797, L22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kliem, B., Su, Y.N., van Ballegooijen, A.A., DeLuca, E.E.: 2013, Magnetohydrodynamic modeling of the solar eruption on 2010 April 8. Astrophys. J. 779, 129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, P., Cho, K.-S., Chen, P.F., Bong, S.-C., Park, S.-H.: 2013, Multiwavelength study of a solar eruption from AR NOAA 11112: II. Large-scale coronal wave and loop oscillation. Solar Phys. 282, 523. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Ning, Z.J., Huang, Y., Chen, N.-H., Zhang, Q.M., Su, Y.N., Su, W.: 2017, Doppler shift oscillations from a hot line observed by IRIS. Astrophys. J. 849, 113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, D., Yuan, D., Su, Y.N., Zhang, Q.M., Su, W., Ning, Z.J.: 2018, Non-damping oscillations at flaring loops. Astron. Astrophys. 617, A86. DOI. ADS.

    Article  ADS  Google Scholar 

  • Li, B., Antolin, P., Guo, M.-Z., Kuznetsov, A.A., Pascoe, D.J., Van Doorsselaere, T., Vasheghani Farahani, S.: 2020, Magnetohydrodynamic fast sausage waves in the solar corona. Space Sci. Rev. 216, 136. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R.: 2020, Magnetic flux ropes in the solar corona: structure and evolution toward eruption. Res. Astron. Astrophys. 20, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, R., Kliem, B., Titov, V.S., Chen, J., Wang, Y., Wang, H., Liu, C., Xu, Y., Wiegelmann, T.: 2016, Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. Astrophys. J. 818, 148. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mancuso, S., Bemporad, A., Frassati, F., Barghini, D., Giordano, S., Telloni, D., Taricco, C.: 2021, Radio evidence for a shock wave reflected by a coronal hole. Astron. Astrophys. 651, L14. DOI. ADS.

    Article  ADS  Google Scholar 

  • McCauley, P.I., Su, Y.N., Schanche, N., Evans, K.E., Su, C., McKillop, S., Reeves, K.K.: 2015, Prominence and filament eruptions observed by the Solar Dynamics Observatory: statistical properties, kinematics, and online catalog. Solar Phys. 290, 1703. DOI. ADS.

    Article  ADS  Google Scholar 

  • Meegan, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Fishman, G., Greiner, J., Hoover, A.S., van der Horst, A.J., von Kienlin, A., Kippen, R.M., Kouveliotou, C., McBreen, S., Paciesas, W.S., Preece, R., Steinle, H., Wallace, M.S., Wilson, R.B., Wilson-Hodge, C.: 2009, The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mitra, P.K., Joshi, B.: 2019, Preflare processes, flux rope activation, large-scale eruption, and associated X-class flare from the active region NOAA 11875. Astrophys. J. 884, 46. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Kolotkov, D.Y.: 2020, Magnetohydrodynamic waves in the solar corona. Annu. Rev. Astron. Astrophys. 58, 441. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L.: 2001, Determination of the coronal magnetic field by coronal loop oscillations. Astron. Astrophys. 372, L53. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: 1999, TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Anfinogentov, S.A., Antolin, P., Jain, R., Kolotkov, D.Y., Kupriyanova, E.G., Li, D., Magyar, N., Nisticò, G., Pascoe, D.J., Srivastava, A.K., Terradas, J., Vasheghani Farahani, S., Verth, G., Yuan, D., Zimovets, I.V.: 2021, Kink oscillations of coronal loops. Space Sci. Rev. 217, 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nechaeva, A., Zimovets, I.V., Nakariakov, V.M., Goddard, C.R.: 2019, Catalog of decaying kink oscillations of coronal loops in the 24th solar cycle. Astrophys. J. Suppl. 241, 31. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nindos, A., Patsourakos, S., Vourlidas, A., Tagikas, C.: 2015, How common are hot magnetic flux ropes in the low solar corona? A statistical study of EUV observations. Astrophys. J. 808, 117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nindos, A., Patsourakos, S., Vourlidas, A., Cheng, X., Zhang, J.: 2020, When do solar erupting hot magnetic flux ropes form? Astron. Astrophys. 642, A109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nisticò, G., Nakariakov, V.M., Verwichte, E.: 2013, Decaying and decayless transverse oscillations of a coronal loop. Astron. Astrophys. 552, A57. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ofman, L., Aschwanden, M.J.: 2002, Damping time scaling of coronal loop oscillations deduced from transition region and coronal explorer observations. Astrophys. J. Lett. 576, L153. DOI. ADS.

    Article  ADS  Google Scholar 

  • Panasenco, O., Martin, S.F., Velli, M., Vourlidas, A.: 2013, Origins of rolling, twisting, and non-radial propagation of eruptive solar events. Solar Phys. 287, 391. DOI. ADS.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Vourlidas, A., Török, T., Kliem, B., Antiochos, S.K., Archontis, V., Aulanier, G., Cheng, X., Chintzoglou, G., Georgoulis, M.K., Green, L.M., Leake, J.E., Moore, R., Nindos, A., Syntelis, P., Yardley, S.L., Yurchyshyn, V., Zhang, J.: 2020, Decoding the pre-eruptive magnetic field configurations of coronal mass ejections. Space Sci. Rev. 216, 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reeves, K.K., Polito, V., Chen, B., Galan, G., Yu, S., Liu, W., Li, G.: 2020, Hot plasma flows and oscillations in the loop-top region during the 2017 September 10 X8.2 solar flare. Astrophys. J. 905, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Régnier, S., Walsh, R.W., Alexander, C.E.: 2011, A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics. Astron. Astrophys. 533, L1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruderman, M.S., Roberts, B.: 2002, The damping of coronal loop oscillations. Astrophys. J. 577, 475. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, L199. DOI. ADS.

    Article  ADS  Google Scholar 

  • Savcheva, A.S., Green, L.M., van Ballegooijen, A.A., DeLuca, E.E.: 2012, Photospheric flux cancellation and the build-up of sigmoidal flux ropes on the Sun. Astrophys. J. 759, 105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Simões, P.J.A., Fletcher, L., Hudson, H.S., Russell, A.J.B.: 2013, Implosion of coronal loops during the impulsive phase of a solar flare. Astrophys. J. 777, 152. DOI. ADS.

    Article  ADS  Google Scholar 

  • Srivastava, A.K., Goossens, M.: 2013, X6.9-class flare-induced vertical kink oscillations in a large-scale plasma curtain as observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. Astrophys. J. 777, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Chen, Q., Hayashi, K.: 2012a, A non-radial eruption in a quadrupolar magnetic configuration with a coronal null. Astrophys. J. 757, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012b, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77. DOI. ADS.

    Article  ADS  Google Scholar 

  • Terradas, J., Oliver, R., Ballester, J.L.: 2006, Damping of kink oscillations in curved coronal loops. Astrophys. J. Lett. 650, L91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465. DOI. ADS.

    Article  ADS  Google Scholar 

  • Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707. ADS.

    ADS  Google Scholar 

  • Van Doorsselaere, T., Nakariakov, V.M., Young, P.R., Verwichte, E.: 2008, Coronal magnetic field measurement using loop oscillations observed by Hinode/EIS. Astron. Astrophys. 487, L17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verwichte, E., Kohutova, P.: 2017, Excitation and evolution of vertically polarised transverse loop oscillations by coronal rain. Astron. Astrophys. 601, L2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verwichte, E., Aschwanden, M.J., Van Doorsselaere, T., Foullon, C., Nakariakov, V.M.: 2009, Seismology of a large solar coronal loop from EUVI/STEREO observations of its transverse oscillation. Astrophys. J. 698, 397. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verwichte, E., Van Doorsselaere, T., White, R.S., Antolin, P.: 2013, Statistical seismology of transverse waves in the solar corona. Astron. Astrophys. 552, A138. DOI. ADS.

    Article  Google Scholar 

  • Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. 284, 179. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T.J., Solanki, S.K.: 2004, Vertical oscillations of a coronal loop observed by TRACE. Astron. Astrophys. 421, L33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, H., Cao, W., Liu, C., Xu, Y., Liu, R., Zeng, Z., Chae, J., Ji, H.: 2015, Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope. Nat. Commun. 6, 7008. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T., Ofman, L., Yuan, D., Reale, F., Kolotkov, D.Y., Srivastava, A.K.: 2021, Slow-mode magnetoacoustic waves in coronal loops. Space Sci. Rev. 217, 34. DOI. ADS.

    Article  ADS  Google Scholar 

  • White, R.S., Verwichte, E.: 2012, Transverse coronal loop oscillations seen in unprecedented detail by AIA/SDO. Astron. Astrophys. 537, A49. DOI. ADS.

    Article  ADS  Google Scholar 

  • White, R.S., Verwichte, E., Foullon, C.: 2012, First observation of a transverse vertical oscillation during the formation of a hot post-flare loop. Astron. Astrophys. 545, A129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., Kliem, B.: 2005, Eruption of a kink-unstable filament in NOAA active region 10696. Astrophys. J. Lett. 628, L163. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xia, C., Keppens, R., Antolin, P., Porth, O.: 2014, Simulating the in situ condensation process of solar prominences. Astrophys. J. Lett. 792, L38. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xue, Z., Yan, X., Yang, L., Wang, J., Zhao, L.: 2017, Observing formation of flux rope by tether-cutting reconnection in the Sun. Astrophys. J. Lett. 840, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yan, X.L., Yang, L.H., Xue, Z.K., Mei, Z.X., Kong, D.F., Wang, J.C., Li, Q.L.: 2018, Simultaneous observation of a flux rope eruption and magnetic reconnection during an X-class solar flare. Astrophys. J. Lett. 853, L18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, J., Dai, J., Chen, H., Li, H., Jiang, Y.: 2018, Filament eruption with a deflection of nearly 90 degrees. Astrophys. J. 862, 86. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yang, Z., Bethge, C., Tian, H., Tomczyk, S., Morton, R., Del Zanna, G., McIntosh, S.W., Karak, B.B., Gibson, S., Samanta, T., He, J., Chen, Y., Wang, L.: 2020, Global maps of the magnetic field in the solar corona. Science 369, 694. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yuan, D., Van Doorsselaere, T.: 2016, Forward modeling of standing kink modes in coronal loops. II. Applications. Astrophys. J. Suppl. 223, 24. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M.: 2020, Simultaneous transverse oscillations of a coronal loop and a filament excited by a circular-ribbon flare. Astron. Astrophys. 642, A159. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M.: 2021, A revised cone model and its application to non-radial prominence eruptions. Astron. Astrophys. 653, L2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, J., Cheng, X., Ding, M.-D.: 2012, Observation of an evolving magnetic flux rope before and during a solar eruption. Nat. Commun. 3, 747. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Su, Y.N., Ji, H.S.: 2017, Pre-flare coronal dimmings. Astron. Astrophys. 598, A3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Ning, Z.J., Guo, Y., Zhou, T.H., Cheng, X., Ji, H.S., Feng, L., Wiegelmann, T.: 2015, Multiwavelength observations of a partially eruptive filament on 2011 September 8. Astrophys. J. 805, 4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, Q.M., Dai, J., Xu, Z., Li, D., Lu, L., Tam, K.V., Xu, A.A.: 2020, Transverse coronal loop oscillations excited by homologous circular-ribbon flares. Astron. Astrophys. 638, A32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhou, Z., Zhang, J., Wang, Y., Liu, R., Chintzoglou, G.: 2017, Toward understanding the 3D structure and evolution of magnetic flux ropes in an extremely long duration eruptive flare. Astrophys. J. 851, 133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zimovets, I.V., Nakariakov, V.M.: 2015, Excitation of kink oscillations of coronal loops: statistical study. Astron. Astrophys. 577, A4. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zimovets, I.V., McLaughlin, J.A., Srivastava, A.K., Kolotkov, D.Y., Kuznetsov, A.A., Kupriyanova, E.G., Cho, I.-H., Inglis, A.R., Reale, F., Pascoe, D.J., Tian, H., Yuan, D., Li, D., Zhang, Q.M.: 2021, Quasi-periodic pulsations in solar and stellar flares: a review of underpinning physical mechanisms and their predicted observational signatures. Space Sci. Rev. 217, 66. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewer for valuable comments and suggestions. We thank L. Feng and Y.N. Su in the Purple Mountain Observatory for helpful discussions. SDO is a mission of NASA’s Living With a Star Program. AIA and HMI data are courtesy of the NASA/SDO science teams.

Funding

This work was funded by the National Key R&D Program of China 2021YFA1600502 (2021YFA1600500), NSFC grants (No. 11790302, 11773079, 11973012, 11973092, 12073081), the International Cooperation and Interchange Program (11961131002), CAS Key Laboratory of Solar Activity, National Astronomical Observatories (KLSA202113), the Strategic Priority Research Program on Space Science, CAS (XDA15052200, XDA15320301), and the mobility program (M-0068) of the Sino-German Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. M. Zhang.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology

Guest Editors: Dmitrii Kolotkov and Bo Li

Supplementary Information

Below are the links to the electronic supplementary material.

(MP4 1.2 MB)

(MP4 816 kB)

(MP4 8.6 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q.M., Chen, J.L., Li, S.T. et al. Transverse Coronal-Loop Oscillations Induced by the Non-radial Eruption of a Magnetic Flux Rope. Sol Phys 297, 18 (2022). https://doi.org/10.1007/s11207-022-01952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-01952-3

Keywords

Navigation