Skip to main content
Log in

A Study on the Various Modes of Parallel Heat Conduction in the Coronal Loops of Small and Large Solar Flares Using Scaling Laws

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Recent studies show that the parallel heat conduction in the plasma of coronal loops associated with solar flares is controlled by the turbulence-dominated mode, in addition to the free streaming and collision-dominated modes. Using scaling laws, we have studied the relative importance of various modes of parallel heat conduction in the coronal loops of the small (B-class) and large (X-class) solar flares. The scaling laws relate the maximum loop temperature and heating rate to the loop pressure and loop half-length for collision, turbulence, and free streaming dominated modes of the parallel heat conduction. For a set of values of loop half-length \(\approx(2.0 - 3.0)\times10^{9} \) cm, loop pressure \(\approx(6.0 - 20.0)\) erg cm−3 for the small coronal loops, and loop half-length \(\approx(3.0 - 11.0)\times10^{9} \) cm, loop pressure \(\approx(1.0 - 103.0)\) erg cm−3 for the large coronal loops at a constant value of mean free path \(= 10^{7.5} \) cm, our results show that the estimated heating time is ≈ 40–125 s, which represents a fast heating rate. The estimated maximum loop temperature is found to be lower compared to the observed values for the coronal loops of the solar flares. The nature of positive and negative correlation between the scaling parameters show that the collision-dominated heat conduction is a dominant process in the loops of small flares while turbulence-dominated processes suppress the collision-dominated parallel heat conduction in the loops of large solar flares. The instabilities caused by the fast flow of evaporation from the footpoints are discussed as the source of the turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Antiochos, S., Sturrock, P.: 1978, Evaporative cooling of flare plasma. Astrophys. J. 220, 1137. ADS.

    Article  ADS  Google Scholar 

  • Antonucci, E., Gabriel, A., Acton, L., Culhane, J., Doyle, J., Leibacher, J., Machado, M., Orwig, L., Rapley, C.: 1982, Impulsive phase of flares in soft X-ray emission. Solar Phys. 78, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Stern, R.A., Güdel, M.: 2008, Scaling laws of solar and stellar flares. Astrophys. J. 672, 659. DOI.

    Article  ADS  Google Scholar 

  • Bian, N.H., Kontar, E.P., Emslie, A.G.: 2016, Suppression of parallel transport in turbulent magnetized plasmas and its impact on the non-thermal and thermal aspects of solar flares. Astrophys. J. 824, 78. DOI.

    Article  ADS  Google Scholar 

  • Bradshaw, S.J., Emslie, A.G., Bian, N.H., Kontar, E.P.: 2019, Coronal loop scaling laws for various forms of parallel heat conduction. Astrophys. J. 880, 80. DOI.

    Article  ADS  Google Scholar 

  • Brown, J.C.: 1972, The directivity and polarisation of thick target X-ray bremsstrahlung from solar flares. Solar Phys. 26, 441. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brown, J., Melrose, D., Spicer, D.: 1979, Production of a collisionless conduction front by rapid coronal heating and its role in solar hard X-ray bursts. Astrophys. J. 228, 592. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cargill, P.J., Mariska, J.T., Antiochos, S.K.: 1995, Cooling of solar flares plasmas. I: Theoretical considerations. Astrophys. J. 439, 1034. DOI. ADS.

    Article  ADS  Google Scholar 

  • Culhane, J., Vesecky, J., Phillips, K.: 1970, The cooling of flare produced plasmas in the solar corona. Solar Phys. 15, 394. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dennis, B.R., Emslie, A., Hudson, H.: 2011, Overview of the volume. Space Sci. Rev. 159, 3. DOI.

    Article  ADS  Google Scholar 

  • Fang, X., Yuan, D., Xia, C., Van Doorsselaere, T., Keppens, R.: 2016, The role of Kelvin–Helmholtz instability for producing loop-top hard X-ray sources in solar flares. Astrophys. J. 833, 36. DOI.

    Article  ADS  Google Scholar 

  • Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1984, Chromospheric evaporation velocities in solar flares. Astrophys. J. 281, L79. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., et al.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI.

    Article  ADS  Google Scholar 

  • Hannah, I., Hudson, H., Battaglia, M., Christe, S., Kašparová, J., Krucker, S., Kundu, M., Veronig, A.: 2011, Microflares and the statistics of X-ray flares. Space Sci. Rev. 159, 263. DOI.

    Article  ADS  Google Scholar 

  • Hirayama, T.: 1974, Theoretical model of flares and prominences. Solar Phys. 34, 323. DOI. ADS.

    Article  ADS  Google Scholar 

  • Holman, G., Kundu, M., Papadopoulos, K.: 1982, Electron pitch angle scattering and the impulsive phase microwave and hard X-ray emission from solar flares. Astrophys. J. 257, 354. DOI. ADS.

    Article  ADS  Google Scholar 

  • Holman, G.D., Aschwanden, M.J., Aurass, H., Battaglia, M., Grigis, P.C., Kontar, E.P., Liu, W., Saint-Hilaire, P., Zharkova, V.V.: 2011, Implications of X-ray observations for electron acceleration and propagation in solar flares. Space Sci. Rev. 159, 107. DOI.

    Article  ADS  Google Scholar 

  • Hudson, H.S.: 2011, Global properties of solar flares. Space Sci. Rev. 158, 5. DOI.

    Article  ADS  Google Scholar 

  • Jain, R., Dave, H., Shah, A., Vadher, N., Shah, V.M., Ubale, G., Manian, K., Solanki, C.M., Shah, K., Kumar, S., et al.: 2005, Solar X-ray spectrometer (SOXS) mission on board GSAT2 Indian spacecraft: The low-energy payload. Solar Phys. 227, 89. DOI.

    Article  ADS  Google Scholar 

  • Jiang, Y.W., Liu, S., Liu, W., Petrosian, V.: 2006, Evolution of the loop-top source of solar flares: Heating and cooling processes. Astrophys. J. 638, 1140. DOI.

    Article  ADS  Google Scholar 

  • Kontar, E., Brown, J., Emslie, A., Hajdas, W., Holman, G., Hurford, G., Kašparová, J., Mallik, P., Massone, A., McConnell, M.L., et al.: 2011, Deducing electron properties from hard X-ray observations. Space Sci. Rev. 159, 301. DOI.

    Article  ADS  Google Scholar 

  • Kontar, E.P., Bian, N.H., Emslie, A.G., Vilmer, N.: 2013, Turbulent pitch-angle scattering and diffusive transport of hard X-ray-producing electrons in flaring coronal loops. Astrophys. J. 780, 176. DOI.

    Article  ADS  Google Scholar 

  • Kontar, E., Perez, J., Harra, L., Kuznetsov, A., Emslie, A., Jeffrey, N., Bian, N., Dennis, B.: 2017, Turbulent kinetic energy in the energy balance of a solar flare. Phys. Rev. Lett. 118, 155101. DOI.

    Article  ADS  Google Scholar 

  • Korablev, L., Rudakov, L.: 1966, Quasilinear theory of current instability in a plasma (quasilinear current instability in two-temperature plasma for Coulomb collision and free electron acceleration). Sov. Phys. JETP 23, 145.

    ADS  Google Scholar 

  • Krucker, S., Battaglia, M., Cargill, P., Fletcher, L., Hudson, H., MacKinnon, A., Masuda, S., Sui, L., Tomczak, M., Veronig, A., et al.: 2008, Hard X-ray emission from the solar corona. Astron. Astrophys. Rev. 16, 155. DOI.

    Article  ADS  Google Scholar 

  • Kumar, P., Jain, R., Bhatt, Y., Shishodia, Y.: 2019, Characteristics of solar microflares as seen in soft X-ray emission. Pramāna 92, 32. DOI.

    Article  ADS  Google Scholar 

  • Kumar, P., Choudhary, R., Sampathkumaran, P., Mandal, S.: 2020, A comparative study of non-thermal parameters of the X-class solar flare plasma obtained from cold and warm thick-target models; error estimation by Monte Carlo simulation method. Astrophys. Space Sci. 365, 1. DOI.

    Article  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G., Smith, D., Zehnder, A., Harvey, P., Curtis, D., Pankow, D., Turin, P., Bester, M., et al.: 2003, The Reuven–Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), Springer, Dordrecht, 3. DOI.

    Book  Google Scholar 

  • Mariska, J.T., Emslie, A.G., Li, P.: 1989, Numerical simulations of impulsively heated solar flares. Astrophys. J. 341, 1067. DOI. ADS.

    Article  ADS  Google Scholar 

  • Melrose, D.: 1990, Particle beams in the solar atmosphere: General overview. Solar Phys. 130, 3. DOI.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1957, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509. DOI.

    Article  ADS  Google Scholar 

  • Reale, F.: 2007, Diagnostics of stellar flares from X-ray observations: From the decay to the rise phase. Astron. Astrophys. 471, 271. DOI.

    Article  ADS  Google Scholar 

  • Rosner, R., Tucker, W.H., Vaiana, G.: 1978, Dynamics of the quiescent solar corona. Astrophys. J. 220, 643. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ruan, W., Xia, C., Keppens, R.: 2019, Extreme-ultraviolet and X-ray emission of turbulent solar flare loops. Astrophys. J. Lett. 877, L11. DOI.

    Article  ADS  Google Scholar 

  • Ryan, D.F., Chamberlin, P.C., Milligan, R.O., Gallagher, P.T.: 2013, Decay-phase cooling and inferred heating of M- and X-class solar flares. Astrophys. J. 778, 68. DOI.

    Article  ADS  Google Scholar 

  • Sagdeev, R.Z., Galeev, A.: 1969, Nonlinear Plasma Theory, Benjamin, New York. ADS.

    MATH  Google Scholar 

  • Schwartz, R., Csillaghy, A., Tolbert, A., Hurford, G., Mc Tiernan, J., Zarro, D.: 2002, RHESSI data analysis software: Rationale and methods. Solar Phys. 210, 165. DOI.

    Article  ADS  Google Scholar 

  • Shibata, K., Yokoyama, T.: 1999, Origin of the universal correlation between the flare temperature and the emission measure for solar and stellar flares. Astrophys. J. 526, L49. DOI

    Article  ADS  Google Scholar 

  • Shibata, K., Yokoyama, T.: 2002, A Hertzsprung–Russell-like diagram for solar/stellar flares and corona: Emission measure versus temperature diagram. Astrophys. J. 577, 422. DOI.

    Article  ADS  Google Scholar 

  • Simões, P.J., Kontar, E.P.: 2013, Implications for electron acceleration and transport from non-thermal electron rates at looptop and footpoint sources in solar flares. Astron. Astrophys. 551, A135. DOI.

    Article  ADS  Google Scholar 

  • Smith, D., Brown, J.: 1980, Limits on the streaming and escape of electrons in thermal models for solar hard X-ray emission. Astrophys. J. 242, 799. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spitzer, L.: 1962, Physics of Fully Ionized Gases, Courier Corporation, Mineola.

    MATH  Google Scholar 

  • Zaumen, W., Acton, L.: 1974, Cooling of solar flare plasmas. Solar Phys. 36, 139. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referee for his/her valuable comments, which greatly improved this paper. The authors also wish to thank Prof. Rajmal Jain (former professor, PRL Ahmedabad) for providing SSWIDL software. The authors wish to acknowledge RHESSI and SOXS missions for the availability of their open X-ray data of various classes of solar flares.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar.

Ethics declarations

Ethical Declarations

The authors have no relevant financial or nonfinancial interests to disclose.

The authors have no conflicts of interest to declare that are relevant to the content of this article.

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Choudhary, R.K. A Study on the Various Modes of Parallel Heat Conduction in the Coronal Loops of Small and Large Solar Flares Using Scaling Laws. Sol Phys 296, 147 (2021). https://doi.org/10.1007/s11207-021-01884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01884-4

Keywords

Navigation