Skip to main content
Log in

Variations in the Correlations of Acceleration and Force of Slow and Fast CMEs with Solar Activity during Solar Cycles 23 – 24

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Studying the behavior of coronal mass ejections (CMEs) is important for both solar physics and space weather. The correlations of smoothed monthly mean daily integrated CME acceleration [\(a\)], mass [\(M\)], and the force [\(Ma\)] to drive CMEs with sunspot activity [\(R_{\mathrm{I}}\)] are analyzed for both slow and fast CMEs and for both Solar Cycles 23 and 24 separately. It is found that \(a\) is inversely related to both \(R_{\mathrm{I}}\) and \(M\). The correlation between \(Ma\) and \(R_{\mathrm{I}}\) for both slow and fast CMEs is negative at the rising phase of Solar Cycle 23 and positive otherwise. There is a sharp peak in \(\gamma =Ma/R_{\mathrm{I}}\) near the solar minimum (December 2008) for both slow and fast CMEs. However, for fast CMEs, there is a sharp negative peak near the previous solar minimum (August 1996) and another positive peak near the current solar minimum (2019). The positive (negative) peak tends to be related to the solar minimum from a stronger (weaker) to a weaker (stronger) solar cycle. These results suggest that the CME acceleration depends more on the strength of solar activity than on the CME’s speed. Stronger magnetic activity may slow down the CMEs that are too massive or too fast and weaker activity may speed up the CMEs that are less massive or too slow. During a few years’ period of magnetic-field polarity reversal around the solar minimum, the force provided by large-scale magnetic-field structures may not be strong enough to constrain CME motions, leading to the “escape” of CMEs with large \(|\gamma |\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aarnio, A.N., Stassun, K.G., Hughes, W.J., McGregor, S.L.: 2011, Solar flares and coronal mass ejections: a statistically determined flare flux – CME mass correlation. Solar Phys. 268, 195. DOI.

    Article  ADS  Google Scholar 

  • Bilenko, I.A.: 2014, Influence of the solar global magnetic-field structure evolution on CMEs. Solar Phys. 289, 4209. DOI.

    Article  ADS  Google Scholar 

  • Bilenko, I.A.: 2017, Statistical studies of coronal mass ejections and coronal holes. Geomagn. Aeron. 57, 952. DOI.

    Article  ADS  Google Scholar 

  • Chen, P.F., Shibata, K.: 2000, An emerging flux trigger mechanism for coronal mass ejections. Astrophys. J. 545, 524. DOI.

    Article  ADS  Google Scholar 

  • Choudhary, D.P., Lawrence, J.K., Norris, M., Cadavid, A.C.: 2014, Different periodicities in the sunspot area and the occurrence of solar flares and coronal mass ejections in Solar Cycle 23–24. Solar Phys. 289, 649. DOI.

    Article  ADS  Google Scholar 

  • Clette, F., Lefèvre, L.: 2016, The new sunspot number: assembling all corrections. Solar Phys. 291, 2629. DOI.

    Article  ADS  Google Scholar 

  • Clette, F., Cliver, E.W., Lefèvre, L., Svalgaard, L., Vaquero, J.M., Leibacher, J.W.: 2016, Preface to topical issue: recalibration of the sunspot number. Solar Phys. 291, 2479. DOI.

    Article  ADS  Google Scholar 

  • Cremades, H., St. Cyr, O.C.: 2007, Coronal mass ejections: solar cycle aspects. Adv. Space Res. 40, 1042. DOI.

    Article  ADS  Google Scholar 

  • Dai, X., Wang, H., Huang, X., Du, Z., He, H.: 2015, An improvement on mass calculations of solar coronal mass ejections via polarimetric reconstruction. Astrophys. J. 801, 39. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2011, The correlation between solar and geomagnetic activity – Part 3: an integral response model. Ann. Geophys. 29, 1005. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2012, Correlations between CME parameters and sunspot activity. Solar Phys. 278, 203. DOI.

    Article  ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Gary, G.A.: 2002, Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: baseline results. Astrophys. J. 569, 1016. DOI.

    Article  ADS  Google Scholar 

  • Feminella, F., Storini, M.: 1997, Large-scale dynamical phenomena during solar activity cycles. Astron. Astrophys. 322, 311. 1997A&A...322..311F.

    ADS  Google Scholar 

  • Forbes, T.G., Linker, J.A., Chen, J., Cid, C., Kóta, J., Lee, M.A., et al.: 2006, CME theory and models. Space Sci. Rev. 123, 251. DOI.

    Article  ADS  Google Scholar 

  • Gerontidou, M., Mavromichalaki, H., Asvestari, E., Papailiou, M., Belov, A., Kurt, V.: 2010, Variations of CMEs properties during the different phases of the Solar Cycle 23. In: Angelopoulos, A., Fildisis, T., The hellenic physical society (eds.) 7th Internat. Conf. Balkan Phys. Union CP-1203, AIP, Melville, 115. DOI.

    Chapter  Google Scholar 

  • Gonzalez, W.D., Tsurutani, B.T.: 1987, Criteria of interplanetary parameters causing intense magnetic storms (\(\text{Dst}< -100\) nT). Planet. Space Sci. 35, 1101. DOI.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., et al.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2006, Coronal mass ejections of Solar Cycle 23. J. Astrophys. Astron. 27, 243. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2010, Corona mass ejections: a summary of recent results. In: Dorotovic, I. (ed.) Proc. 20th National Solar Physics Meeting, Papradno, Slovakia, 108. ADS. URL: stara.suh.sk/obs/slnsem/20css/22w.pdf.

    Google Scholar 

  • Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., Nunes, S., Howard, R.A.: 2003, Coronal mass ejection activity during Solar Cycle 23. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment SP-535, ESA, Noordwijk, 403. ADS.

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., et al.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Mäkelä, P.: 2010, Coronal mass ejections from sunspot and non-sunspot regions. In: Hasan, S.S., Rutten, R.J. (eds.) Magnetic Coupling Between the Interior and Atmosphere of the Sun, Astrophys. Space Scien. Proc., Springer, Heidelberg, 289. DOI.

    Chapter  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P., Michalek, G.: 2014, Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophys. Res. Lett. 41, 2673. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P., Yashiro, S., Michalek, G.: 2015, The peculiar behavior of halo coronal mass ejections in Solar Cycle 24. Astrophys. J. Lett. 804, L23. DOI.

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1993, The solar flare myth. J. Geophys. Res. 98, 18937. DOI.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Hildner, E., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1976, The speeds of coronal mass ejection events. Solar Phys. 48, 389. DOI.

    Article  ADS  Google Scholar 

  • Hildner, E., Gosling, J.T., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1976, Frequency of coronal transients and solar activity. Solar Phys. 48, 127. DOI.

    Article  ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Gopalswamy, N., Ozguc, A., et al.: 2011, Maximum coronal mass ejection speed as an indicator of solar and geomagnetic activities. Astrophys. J. 727, 44. DOI.

    Article  ADS  Google Scholar 

  • Kliem, B., Török, T.: 2006, Torus instability. Phys. Rev. Lett. 96, 255002. DOI.

    Article  ADS  Google Scholar 

  • Lee, M.A.: 2005, Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys. J. Suppl. 158, 38. DOI.

    Article  ADS  Google Scholar 

  • Michalek, G., Gopalswamy, N., Yashiro, S.: 2019, On the coronal mass ejection detection rate during Solar Cycles 23 and 24. Astrophys. J. 880, 51. DOI.

    Article  ADS  Google Scholar 

  • Michalek, G., Gopalswamy, N., Yashiro, S., Bronarska, K.: 2015, Dynamics of CMEs in the LASCO field of view. Solar Phys. 290, 903. DOI.

    Article  ADS  Google Scholar 

  • Moradi, H., Baldner, C., Birch, A.C., Braun, D.C., Cameron, R.H., Duvall, T.L. Jr., et al.: 2010, Modeling the subsurface structure of sunspots. Solar Phys. 267, 1. DOI.

    Article  ADS  Google Scholar 

  • Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., Ross, C.L.: 1979, The association of coronal mass ejection transients with other forms of solar activity. Solar Phys. 61, 201. DOI.

    Article  ADS  Google Scholar 

  • Petrovay, K.: 2020, Solar cycle prediction. Liv. Rev. Solar Phys. 17, 2. DOI.

    Article  ADS  Google Scholar 

  • Ramesh, K.B.: 2010, Coronal mass ejections and sunspots – solar cycle perspective. Astrophys. J. Lett. 712, L77. DOI.

    Article  ADS  Google Scholar 

  • Ravishankar, A., Michalek, G.: 2020, Non-interacting coronal mass ejections and solar energetic particles near the quadrature configuration of Solar TErrestrial RElations Observatory. Astron. Astrophys. 638, A42. DOI.

    Article  ADS  Google Scholar 

  • Ravishankar, A., Michalek, G., Yashiro, S.: 2020, Kinematics of coronal mass ejections in the LASCO field of view. Astron. Astrophys. 639, A68. DOI.

    Article  ADS  Google Scholar 

  • Roussev, I.I., Gombosi, T.I., Sokolov, I.V., Velli, M., Manchester, W. IV, DeZeeuw, D.L., et al.: 2003, A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys. J. Lett. 595, L57. DOI.

    Article  ADS  Google Scholar 

  • Sachdeva, N., Subramanian, P., Colaninno, R., Vourlidas, A.: 2015, CME propagation: where does aerodynamic drag ‘take over’? Astrophys. J. 809, 158. DOI.

    Article  ADS  Google Scholar 

  • Sachdeva, N., Subramanian, P., Vourlidas, A., Bothmer, V.: 2017, CME dynamics using STEREO and LASCO observations: the relative importance of Lorentz forces and solar wind drag. Solar Phys. 292, 118. DOI.

    Article  ADS  Google Scholar 

  • Selvakumaran, R., Veenadhari, B., Akiyama, S., Pandya, M., Gopalswamy, N., Yashiro, S., et al.: 2016, On the reduced geoeffectiveness of solar cycle 24: a moderate storm perspective. J. Geophys. Res. 121, 8188. DOI.

    Article  Google Scholar 

  • Sheeley, N.R., Walters, J.H., Wang, Y.-M., Howard, R.A.: 1999, Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J. Geophys. Res. 104, 24739. DOI.

    Article  ADS  Google Scholar 

  • St. Cyr, O.C., Howard, R.A., Sheeley, N.R. Jr., Plunkett, S.P., Michels, D.J., Paswaters, S.E., et al.: 2000, Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J. Geophys. Res. 105, 18169. DOI.

    Article  ADS  Google Scholar 

  • Temmer, M., Veronig, A., Hanslmeier, A.: 2003, Does solar flare activity lag behind sunspot activity? Solar Phys. 215, 111. DOI.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., et al.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. 111, A07S01. DOI.

    Article  Google Scholar 

  • Upton, L.A., Hathaway, D.H.: 2018, An updated Solar Cycle 25 prediction with AFT: the modern minimum. Geophys. Res. Lett. 45, 8091. DOI.

    Article  ADS  Google Scholar 

  • Vecchio, A., Laurenza, M., Meduri, D., Carbone, V., Storini, M.: 2012, The dynamics of the solar magnetic field: polarity reversals, butterfly diagram, and quasi-biennial oscillations. Astrophys. J. 749, 27. DOI.

    Article  ADS  Google Scholar 

  • Vourlidas, A., Subramanian, P., Dere, K.P., Howard, R.A.: 2000, Large-angle spectrometric coronagraph measurements of the energetics of coronal mass ejections. Astrophys. J. 534, 456. DOI.

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, R.A.: 1994, The solar cycle variation of coronal mass ejections and the solar wind mass flux. J. Geophys. Res. 99, 4201. DOI.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., et al.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. DOI.

    Article  ADS  Google Scholar 

  • Yoshida, A., Yamagishi, H.: 2010, Predicting amplitude of solar cycle 24 based on a new precursor method. Ann. Geophys. 28, 417. DOI.

    Article  ADS  Google Scholar 

  • Zhu, C., Qiu, J., Liewer, P., Vourlidas, A., Spiegel, M., Hu, Q.: 2020, How does magnetic reconnection drive the early-stage evolution of coronal mass ejections? Astrophys. J. 893, 141. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviewer for valuable suggestions to improve this manuscript. This work is supported by the National Science Foundation of China (NSFC) through grants 11603040 and 11973058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanle Du.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z. Variations in the Correlations of Acceleration and Force of Slow and Fast CMEs with Solar Activity during Solar Cycles 23 – 24. Sol Phys 296, 34 (2021). https://doi.org/10.1007/s11207-021-01778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01778-5

Keywords

Navigation