Skip to main content
Log in

Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux – CME Mass Correlation

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6733 CMEs having well-measured masses against 12 050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10 – 80 minutes afterward, and we further require the flare and CME to occur within ± 45° in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log (CME mass)∝0.68×log (flare flux), and in the limit of higher flare fluxes, log (CME mass)∝0.33×log (flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log (CME mass)∝0.70×log (flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ≈ 10−7 – 10−4 W m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, M.D.: 2003, Solar Phys. 218, 261.

    Article  ADS  Google Scholar 

  • Andrews, M.D., Howard, R.A.: 2001, Space Sci. Rev. 95, 147.

    Article  ADS  Google Scholar 

  • Chen, J., Howard, R.A., Brueckner, G.E., Santoro, R., Krall, J., Paswaters, S.E., St. Cyr, O.C., Schwenn, R., Lamy, P., Simnett, G.M.: 1997, Astrophys. J. Lett. 490, 191.

    Article  ADS  Google Scholar 

  • Dryer, M.: 1996, Solar Phys. 169, 421.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, Earth Moon Planets 104, 295.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Hildner, E., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1976, Solar Phys. 48, 389.

    Article  ADS  Google Scholar 

  • Haisch, B., Antunes, A., Schmitt, J.H.M.M.: 1995, Science 268, 1327.

    Article  ADS  Google Scholar 

  • Harrison, R.A.: 1991, Adv. Space Res. 11, 25.

    Article  ADS  Google Scholar 

  • Harrison, R.A.: 1995, Astron. Astrophys. 304, 585.

    ADS  Google Scholar 

  • LaBonte, B.J., Georgoulis, M.K., Rust, D.M.: 2007, Astrophys. J. 671, 955.

    Article  ADS  Google Scholar 

  • Mahrous, A., Shaltout, M., Beheary, M.M., Mawad, R., Youssef, M.: 2009, Adv. Space Res. 43, 1032.

    Article  ADS  Google Scholar 

  • Massi, M., Ros, E., Menten, K.M., Kaufman Bernadó, M., Torricelli-Ciamponi, G., Neidhöfer, J., Boden, A., Boboltz, D., Sargent, A., Torres, G.: 2008, Astron. Astrophys. 480, 489.

    Article  ADS  Google Scholar 

  • Miura, H., Nakamoto, T.: 2007, Icarus 188, 246.

    Article  ADS  Google Scholar 

  • Moon, Y.J., Choe, G.S., Wang, H., Park, Y.D., Cheng, C.Z.: 2003, J. Korean Astron. Soc. 36, 61.

    Article  ADS  Google Scholar 

  • Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., Ross, C.L.: 1979, Solar Phys. 61, 201.

    Article  ADS  Google Scholar 

  • Nindos, A., Andrews, M.D.: 2004, Astrophys. J. Lett. 616, 175.

    Article  ADS  Google Scholar 

  • Peres, G., Orlando, S., Reale, F., Rosner, R.: 2001, Astrophys. J. 563, 1045.

    Article  ADS  Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: 1995, Numerical Recipes in FORTRAN Example Book: The Art of Scientific Computing, Cambridge University Press, New York, 692.

    Google Scholar 

  • Reale, F., Betta, R., Peres, G., Serio, S., McTiernan, J.: 1997, Astron. Astrophys. 325, 782.

    ADS  Google Scholar 

  • Skelly, M.B., Unruh, Y.C., Cameron, A.C., Barnes, J.R., Donati, J.F., Lawson, W.A., Carter, B.D.: 2008, Mon. Not. Roy. Astron. Soc. 385, 708.

    Article  ADS  Google Scholar 

  • St. Cyr, O.C., Webb, D.F.: 1991, Solar Phys. 136, 379.

    Article  ADS  Google Scholar 

  • Švestka, Z.: 2001, Space Sci. Rev. 95, 135.

    Article  ADS  Google Scholar 

  • Vourlidas, A., Subramanian, P., Dere, K.P., Howard, R.A.: 2000, Astrophys. J. 534, 456.

    Article  ADS  Google Scholar 

  • Webb, D.F., Hundhausen, A.J.: 1987, Solar Phys. 108, 383.

    Article  ADS  Google Scholar 

  • Wood, B.E., Karovska, M., Chen, J., Brueckner, G.E., Cook, J.W., Howard, R.A.: 1999, Astrophys. J. 512, 484.

    Article  ADS  Google Scholar 

  • Yashiro, S., Michalek, G., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2008, Astrophys. J. 673, 1174.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Aarnio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarnio, A.N., Stassun, K.G., Hughes, W.J. et al. Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux – CME Mass Correlation. Sol Phys 268, 195–212 (2011). https://doi.org/10.1007/s11207-010-9672-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-010-9672-7

Keywords

Navigation