Skip to main content

Advertisement

Log in

Estimating the Maximum Intensities of Soft X-Ray Flares Using Extreme Value Theory

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Solar flares are one of the most energetic events in the solar system, their impact on Earth at ground level and its atmosphere remains under study. The repercussions of this phenomenon in our technological infrastructure includes radio blackouts and errors in geopositional and navigation systems that are considered natural hazards in ever more countries. Occurrence frequency and intensity of the most energetic solar flares are being taken into account in national programs for civil protection in order to reduce the risk and increase the resilience from space weather events. In this work we use the statistical theory of extreme values as well as other statistical methods in order to assess the magnitudes of the most extreme solar-flare events expected to occur in a given period of time. We found that the data set under study presents a dual tail behavior. Our results show that on average we can expect one solar flare greater than X23 each 25 years, that is to say, one such event each two solar cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. The data can be found in https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/xrs/ .

  2. See DiCiccio and Efron (1996) and Diaconis and Efron (1983) for a description of the bootstrap method.

  3. In terms of Figure 4, the set \(S_{59}\) would be a combination of data points on the left and on the right of the dashed vertical line in the figure.

  4. For the generation of these synthetic samples, we used both, \(G_{1}\) and \(G_{2}\) as the parent distribution.

  5. www.swpc.noaa.gov/noaa-scales-explanation .

References

  • Ackermann, M., Ajello, M., Albert, A., Allafort, A., Baldini, L., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., Bissaldi, E., Bonamente, E., Bottacini, E., Bouvier, A., Brandt, T.J., Bregeon, J., Brigida, M., Bruel, P., Buehler, R., Buson, S., Caliandro, G.A., Cameron, R.A., Caraveo, P.A., Cecchi, C., Charles, E., Chekhtman, A., Chen, Q., Chiang, J., Chiaro, G., Ciprini, S., Claus, R., Cohen-Tanugi, J., Conrad, J., Cutini, S., D’Ammando, F., de Angelis, A., de Palma, F., Dermer, C.D., Desiante, R., Digel, S.W., Di Venere, L., Silva, E.d.C.e., Drell, P.S., Drlica-Wagner, A., Favuzzi, C., Fegan, S.J., Focke, W.B., Franckowiak, A., Fukazawa, Y., Funk, S., Fusco, P., Gargano, F., Gasparrini, D., Germani, S., Giglietto, N., Giordano, F., Giroletti, M., Glanzman, T., Godfrey, G., Grenier, I.A., Grove, J.E., Guiriec, S., Hadasch, D., Hayashida, M., Hays, E., Horan, D., Hughes, R.E., Inoue, Y., Jackson, M.S., Jogler, T., Jóhannesson, G., Johnson, W.N., Kamae, T., Kawano, T., Knödlseder, J., Kuss, M., Lande, J., Larsson, S., Latronico, L., Lemoine-Goumard, M., Longo, F., Loparco, F., Lott, B., Lovellette, M.N., Lubrano, P., Mayer, M., Mazziotta, M.N., McEnery, J.E., Michelson, P.F., Mizuno, T., Moiseev, A.A., Monte, C., Monzani, M.E., Moretti, E., Morselli, A., Moskalenko, I.V., Murgia, S., Murphy, R., Nemmen, R., Nuss, E., Ohno, M., Ohsugi, T., Okumura, A., Omodei, N., Orienti, M., Orlando, E., Ormes, J.F., Paneque, D., Panetta, J.H., Perkins, J.S., Pesce-Rollins, M., Petrosian, V., Piron, F., Pivato, G., Porter, T.A., Rainò, S., Rando, R., Razzano, M., Reimer, A., Reimer, O., Ritz, S., Schulz, A., Sgrò, C., Siskind, E.J., Spandre, G., Spinelli, P., Takahashi, H., Takeuchi, Y., Tanaka, Y., Thayer, J.G., Thayer, J.B., Thompson, D.J., Tibaldo, L., Tinivella, M., Tosti, G., Troja, E., Tronconi, V., Usher, T.L., Vandenbroucke, J., Vasileiou, V., Vianello, G., Vitale, V., Werner, M., Winer, B.L., Wood, D.L., Wood, K.S., Wood, M., Yang, Z. (Fermi LAT Collaboration): 2014, High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two M-class flares. Astrophys. J. 787, 15. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Freeland, S.L.: 2012, Automated solar flare statistics in soft x-rays over 37 years of goes observations: The invariance of self-organized criticality during three solar cycles. Astrophys. J. 754(2), 112.

    Article  ADS  Google Scholar 

  • Benz, A.O., Güdel, M.: 2010, Physical processes in magnetically driven flares on the Sun, stars, and young stellar objects. Annu. Rev. Astron. Astrophys. 48, 241. DOI . ADS .

    Article  ADS  Google Scholar 

  • Canfield, R.C., de La Beaujardiere, J.-F., Fan, Y., Leka, K.D., McClymont, A.N., Metcalf, T.R., Mickey, D.L., Wuelser, J.-P., Lites, B.W.: 1993, The morphology of flare phenomena, magnetic fields, and electric currents in active regions. I – Introduction and methods. Astrophys. J. 411, 362. DOI . ADS .

    Article  ADS  Google Scholar 

  • Castillo, E., Hadi, A.S., Balakrishnan, N., Sarabia, J.-M.: 2005, Extreme Value and Related Models with Applications in Engineering and Science, Wiley Series in Probability and Statistics. John Wiley & Sons, New York. ISBN: 978-0471671725.

    MATH  Google Scholar 

  • Chakrabarty, A., Samorodnitsky, G.: 2012, Understanding heavy tails in a bounded world or, is a truncated heavy tail heavy or not? Stoch. Models 28(1), 109.

    Article  MathSciNet  MATH  Google Scholar 

  • Chamberlin, P.C., Woods, T.N., Eparvier, F.G., Jones, A.R.: 2009, Next generation X-ray sensor (XRS) for the NOAA GOES-R satellite series. In: Solar Physics and Space Weather Instrumentation III, Proceedings of the SPIE 7438, 743802. DOI . ADS .

    Chapter  Google Scholar 

  • Chertok, I.M., Belov, A.V.: 2017, Long- and mid-term variations of the soft X-ray flare type in solar cycles. Solar Phys. 292, 144. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chinnery, M.A., North, R.G.: 1975, The frequency of very large earthquakes. Science 190, 1197.

    Article  ADS  Google Scholar 

  • Clauset, A., Shalizi, C.R., Newman, M.E.: 2009, Power-law distributions in empirical data. SIAM Rev. 51(4), 661.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cliver, E.W., Dietrich, W.F.: 2013, The 1859 space weather event revisited: Limits of extreme activity. J. Space Weather Space Clim. 3(27), A31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Coles, S.: 2001, An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics. Springer, Bristol.

    Book  MATH  Google Scholar 

  • de Haan, L., Ferreira, A.: 2007, Extreme Value Theory: An Introduction, Springer Series in Operations Research and Financial Engineering. Springer, New York, ISBN 9780387344713.

    MATH  Google Scholar 

  • Diaconis, P., Efron, B.: 1983, Computer-intensive methods in statistics. Sci. Am. 248(5), 116.

    Article  ADS  Google Scholar 

  • DiCiccio, T.J., Efron, B.: 1996, Bootstrap confidence intervals. Stat. Sci. 11, 189.

    Article  MathSciNet  MATH  Google Scholar 

  • Gold, T., Hoyle, F.: 1960, On the origin of solar flares. Mon. Not. Roy. Astron. Soc. 120, 89. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grabchak, M.: 2016, Tempered stable distributions. In: Tempered Stable Distributions, Springer, Charlotte.

    Chapter  Google Scholar 

  • Jonas, S., McCarron, E.D.: 2016, White House releases national space weather strategy and action plan. Space Weather 14(2), 54. DOI .

    Article  ADS  Google Scholar 

  • Kane, S.R., McTiernan, J.M., Hurley, K.: 2005, Multispacecraft observations of the hard X-ray emission from the giant solar flare on 2003 November 4. Astron. Astrophys. 433, 1133. DOI . ADS .

    Article  ADS  Google Scholar 

  • Katsova, M.M., Kitchatinov, L.L., Livshits, M.A., Moss, D.L., Sokoloff, D.D., Usoskin, I.G.: 2018, Can superflares occur on the Sun? A view from dynamo theory. Astron. Rep. 62(1), 72. DOI .

    Article  ADS  Google Scholar 

  • Koons, H.C.: 2001, Statistical analysis of extreme values in space science. J. Geophys. Res. 106, 10915. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leadbetter, M.R., Lindgren, G., Rootzén, H.: 2012, Extremes and Related Properties of Random Sequences and Processes, Springer, New York.

    MATH  Google Scholar 

  • Meerschaert, M.M., Roy, P., Shao, Q.: 2012, Parameter estimation for exponentially tempered power law distributions. Commun. Stat., Theory Methods 41(10), 1839. DOI .

    Article  MathSciNet  MATH  Google Scholar 

  • Riley, P.: 2012, On the probability of occurrence of extreme space weather events. Space Weather 10(2), 02012. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stumpf, M.P.H., Porter, M.A.: 2012, Critical truths about power laws. Science 335(6069), 665. DOI .

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Toriumi, S., Schrijver, C.J., Harra, L.K., Hudson, H., Nagashima, K.: 2017, Magnetic properties of solar active regions that govern large solar flares and eruptions. Astrophys. J. 834, 56. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wheatland, M.S.: 2010, Evidence for departure from a power-law flare size distribution for a small solar active region. Astrophys. J. 710, 1324. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank projects for Catedras Conacyt (Conacyt Fellow), Repositorios Institucionales (268273) and Ciencia Basica (254497).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. De la Luz.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De la Luz, V., Balanzario, E.P. & Tsiftsi, T. Estimating the Maximum Intensities of Soft X-Ray Flares Using Extreme Value Theory. Sol Phys 293, 119 (2018). https://doi.org/10.1007/s11207-018-1342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1342-1

Keywords

Navigation