Skip to main content
Log in

Extreme value theory applied to long-term sunspot areas

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Solar activity, such as sunspots and flares, has a great impact on humans, living beings, and technologies in the whole world. Changes in sunspots will influence high-frequency and space-navigation radio communications. Based on the full-disk, southern and northern hemispheres sunspot areas (SAs) data in 1874–2023 from the Royal Observatory, Greenwich (RGO) USAF/NOAA, extreme value theory (EVT) is applied to predict the trend of the 25th and 26th solar cycles (SCs) in this work. Two methods with EVT, the block maxima (BM) approach and the peaks-over-threshold (POT) approach, are employed to research solar extreme events. The former method focuses on each block’s maximum sunspot areas value and is applied for the generalized extreme value (GEV) distribution. The latter method aims to select the extreme values exceeding a threshold value and is used to obtain the generalized Pareto (GP) distribution. It is the first time that the EVT is applied on the sunspot areas data from the Royal Observatory, Greenwich (RGO) USAF/NOAA. The analysis indicates that the estimated 8-year return levels for sunspot areas are 5701 and 6258 using the two methods, while the estimated 19-year return levels are all 7165. This suggests that the trends of the 25th and 26th solar cycles will be stronger than that of the 24th solar cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acero F. J., Carrasco V. M. S., Gallego M. C., García J. A., Vaquero J. M. 2017, Astrophys. J., 839, 98

    Article  ADS  Google Scholar 

  • Acero F. J., Gallego M. C., García J. A., Usoskin I. G., Vaquero J. M. 2018a, The Astrophysics Journal, 853, 80

  • Acero F. J., García J. A., Gallego M. C. 2011, J. Clim., 24, 1089

    Article  ADS  Google Scholar 

  • Acero F. J., García J. A., Gallego M. C., Parey S., Dacunha-Castelle D. 2014, J. Geophys. Res. (Atmos.), 119, 39

    Article  ADS  Google Scholar 

  • Acero F. J., Vaquero J. M., Gallego M. C., García J. A. 2018b, Geophys. Res. Lett., 45, 9435

  • Asensio Ramos A. 2007, Astron. Astrophys., 472, 293

    Article  ADS  Google Scholar 

  • Attia A.-F., Ismail H. A., Basurah H. M. 2013, Astrophys. Space Sci., 344, 5

    Article  ADS  Google Scholar 

  • Babcock H. W. 1961, Astrophys. J., 133, 572

    Article  ADS  Google Scholar 

  • Bernstein J. P., Bhavsar S. P. 2001, Mon. Not. R. Astron. Soc., 322, 625

    Article  ADS  Google Scholar 

  • Bhavsar S. P., Barrow J. D. 1985, Mon. Not. R. Astron. Soc., 213, 857

    Article  ADS  Google Scholar 

  • Bhowmik P., Jiang J., Upton L., Lemerle A., Nandy D. 2023, Space Sci. Rev., 219, 40

    Article  ADS  Google Scholar 

  • Bhowmik P., Nandy D. 2018, Natu. Commun. 9, 5209

  • Cameron R., Schüssler M. 2008, Astrophys. J., 685, 1291

    Article  ADS  Google Scholar 

  • Castillo E., Hadi A. S., Balakrishnan N., Sarabia J. M. 2004, Wiley

  • Chen Y.-Q., Zheng S., Xiao Y.-S. et al. 2021, Atmosphere, 12, 1176

    Article  ADS  Google Scholar 

  • Choudhuri A. R., Chatterjee P., Jiang J. 2007, Phys. Rev. Lett., 98, 131103

    Article  ADS  Google Scholar 

  • Chowdhury P., Jain R., Ray P. C., Burud D., Chakrabarti A. 2021, Sol. Phys., 296, 1

    Article  Google Scholar 

  • Coelho C. A. S., Ferro C. A. T., Stephenson D. B., Steinskog D. J. 2008, J. Clim., 21, 2072

    Article  ADS  Google Scholar 

  • Coles S. G. 2001, An Introduction to Statistical Modeling of Extreme Values (Berlin: Springer)

  • Deng L. H., Li B., Xiang Y. Y., Dun G. T. 2016, Astron. J., 151, 2

    Article  ADS  Google Scholar 

  • Deng L. H., Zhang X. J., Deng H., Mei Y., Wang F. 2020, Mon. Not. R. Astron. Soc., 491, 848

    Article  ADS  Google Scholar 

  • Dikpati M., de Toma G., Gilman P. A. 2006, Geophys. Res. Lett., 33, L05102

    Article  ADS  Google Scholar 

  • Elvidge S., Angling M. J. 2018, Space Weather Int. J. Res. Appl.

  • Ferreira A., de Haan L. 2013, arXiv e-prints, arXiv:1310.3222

  • Gilli M., Keellezi E. 2006, Comput. Econ., 27, 207

    Article  Google Scholar 

  • Gopalswamy N., Makela P., Akiyama S., Yashiro S., Thakur N. 2018, J. Atmos. Sol. Terr. Phys., 179, 225

    Article  ADS  Google Scholar 

  • Hathaway D. H. 2015, Living Rev. Sol. Phys., 12, 4

  • Heristchi D., Mouradian Z. 2009, Astron. Astrophys., 497, 835

  • Javaraiah J. 2015, New Astron., 34, 54

    Article  ADS  Google Scholar 

  • Jiang J., Cao J. 2018, J. Atmos. Sol. Terr. Phys., 176, 34

    Article  ADS  Google Scholar 

  • Karak B. B. 2023, Living Rev. Sol. Phys., 20, 3

    Article  ADS  Google Scholar 

  • Karak B. B., Choudhuri A. R. 2011, Mon. Not. R. Astron. Soc., 410, 1503

    ADS  Google Scholar 

  • Karak B. B., Mandal S., Banerjee D. 2018, Astrophys. J., 866, 17

  • Kitiashvili I. N. 2021, Mon. Not. R. Astron. Soc., 505, 6085

  • Kumar P., Biswas A., Karak B. B. 2022, Mon. Not. R. Astron. Soc., 513, L112

  • Love J. J. 2020, Space Weather, 18, e02255

    Article  Google Scholar 

  • Mandal S., Krivova N. A., Solanki S. K., Sinha N., Banerjee D. 2020, Astron. Astrophys., 640, A78

  • Nandy D. 2021, Sol. Phys., 296, 54

  • Noble P. L., Wheatland M. S. 2012, Sol. Phys., 276, 363

  • Nogaj M., Yiou P., Parey S., Malek F., Naveau P. 2006, Geophys. Res. Lett., 33, L10801

  • Pala Z., Atici R. 2019, Sol. Phys., 294, 50

    Article  ADS  Google Scholar 

  • Petrovay K. 2020, Living Rev. Sol. Phys., 17, 2

    Article  ADS  Google Scholar 

  • Prasad A., Roy S., Sarkar A., Chandra Panja S., Narayan Patra S. 2022, Adv. Space Res., 69, 798

    Article  ADS  Google Scholar 

  • Rigozo N. R., Souza Echer M. P., Evangelista H., Nordemann D. J. R., Echer E. 2011, J. Atmos. Sol. Terr. Phys., 73, 1294

  • Sarp V., Kilcik A., Yurchyshyn V., Rozelot J. P., Ozguc A. 2018a, Mon. Not. R. Astron. Soc., 481, 2981

  • Sarp V., Kilcik A., Yurchyshyn V., Rozelot J. P., Ozguc A. 2018b, Mon. Not. R. Astron. Soc., 481, 2981

  • Schatten K. H., Scherrer P. H., Svalgaard L., Wilcox J. M. 1978, GRL, 5, 411

  • Tsiftsi T., De la Luz V. 2018, Space Weather, 16, 1984

  • Willis D. M., Tulunay Y. K. 1979, Sol. Phys., 64, 237

Download references

Acknowledgements

The authors thank the Royal Observatory, Greenwich (RGO) USAF/NOAA that provided the data. This research is supported by the National Natural Science Foundation of China under Grant Numbers U2031202, 12203029 and 11873089. The authors also thank the support of Yunnan Key Laboratory of Solar Physics and Space Science under the Number YNSPCC202208. This work is also supported by the Yunnan Fundamental Research Projects (grant no. 202301AV070007) and the ‘Yunnan Revitalization Talent Support Program’ Innovation Team Project (202405AS350012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Guang Zeng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Chen, YQ., Zeng, SG. et al. Extreme value theory applied to long-term sunspot areas. J Astrophys Astron 45, 14 (2024). https://doi.org/10.1007/s12036-024-09999-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-024-09999-3

Keywords

Navigation