Skip to main content
Log in

Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is \(113\pm 1.6~\mbox{days}\) while we detected much longer periodicities (\(327\pm 13\), \(312 \pm 11\), and \(256\pm 8~\mbox{days}\)) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding \(55\pm 0.7~\mbox{days}\) during Solar Cycles 22 and 24, while a \(113\pm 1.3~\mbox{days}\) period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only \(31\pm 0.2~\mbox{days}\) for Cycle 22 and \(72\pm 1.3~\mbox{days}\) for the current Cycle 24, while the largest measured period was \(327\pm 13~\mbox{days}\) during Solar Cycle 23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Babcock, H.W.: 1961, The topology of the sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI .

    Article  ADS  Google Scholar 

  • Bai, T.: 1992, The 77 day periodicity in the flare rate of cycle 22. Astrophys. J. Lett. 388, L69. DOI .

    Article  ADS  Google Scholar 

  • Bai, T.: 2003, Periodicities in solar flare occurrence: analysis of cycles 19 – 23. Astrophys. J. 591, 406. DOI .

    Article  ADS  Google Scholar 

  • Bai, T., Sturrock, P.: 1987, The 152-day periodicity of the solar flare occurrence rate. Nature 327, 601. DOI .

    Article  ADS  Google Scholar 

  • Bai, T., Sturrock, P.: 1991, The 154-day and related periodicities of solar activity as subharmonics of a fundamental period. Nature 350, 141. DOI .

    Article  ADS  Google Scholar 

  • Ballester, J.L., Oliver, R., Baudin, F.: 1999, Discovery of the near 158 day periodicity in group sunspot numbers during the eighteenth century. Astrophys. J. Lett. 522, L153. DOI .

    Article  ADS  Google Scholar 

  • Ballester, J.L., Oliver, R., Carbonell, M.: 2002, The near 160 day periodicity in the photospheric magnetic flux. Astrophys. J. 566, 505. DOI .

    Article  ADS  Google Scholar 

  • Bludova, N.G., Obridko, V.N., Badalyan, N.: 2014, The relative umbral area in spot groups as an index of cyclic variation of solar activity. Solar Phys. 289, 1013. DOI .

    Article  ADS  Google Scholar 

  • Bouwer, S.D.: 1992, Periodicities of solar irradiance and solar activity indices. II. Solar Phys. 142, 365. DOI .

    Article  ADS  Google Scholar 

  • Brandenburg, A., Rogachevskii, I., Kleeorin, N.: 2016, Magnetic concentrations in stratified turbulence: the negative effective magnetic pressure instability. New J. Phys. 18, 125011. DOI .

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., Isobe, H.: 2014, Flux emergence (theory). Living Rev. Solar Phys. 11, 3. DOI .

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., Schussler, M., Tarbell, T.D., Title, A.M.: 2008, Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations. Astrophys. J. 687, 1373. DOI .

    Article  ADS  Google Scholar 

  • Choudhary, D.P., Lawrence, J.K., Norris, M., Cadavid, A.C.: 2014, Different periodicities in the sunspot area and the occurrence of solar flares and coronal mass ejections in Solar Cycle 23 – 24. Solar Phys. 289, 649. DOI .

    Article  ADS  Google Scholar 

  • Chowdhury, P., Dwivedi, B.N.: 2011, Periodicities of sunspot number and coronal index time series during Solar Cycle 23. Solar Phys. 270, 365. DOI .

    Article  ADS  Google Scholar 

  • Chowdhury, P., Jain, R., Awasthi, A.K.: 2013, Periodicities in the X-ray emission from the solar corona. Astrophys. J. 778, 9. DOI .

    Article  Google Scholar 

  • Chowdhury, P., Khan, M., Ray, P.C.: 2009, Intermediate-term periodicities in sunspot areas during solar cycles 22 and 23. Mon. Not. Roy. Astron. Soc. 392, 1159. DOI .

    Article  ADS  Google Scholar 

  • Chowdhury, P., Choudhary, D.P., Gosain, S., Moon, Y.J.: 2015, Short-term periodicities in interplanetary, geomagnetic and solar phenomena during Solar Cycle 24. Astrophys. Space Sci. 356, 7. DOI .

    Article  ADS  Google Scholar 

  • Deng, L.H., Qu, Z.Q., Yan, X.L., Wang, K.R.: 2013, Phase analysis of sunspot group numbers on both solar hemispheres. Res. Astron. Astrophys. 13, 104. DOI .

    Article  ADS  Google Scholar 

  • Dennis, B.R.: 1985, Solar hard X-ray bursts. Solar Phys. 100, 465. DOI .

    Article  ADS  Google Scholar 

  • Dimitropoulou, M., Moussas, X., Strintzi, D.: 2008, Enhanced Rieger-type periodicities detection in X-ray solar flares and statistical validation of Rossby waves existence. Mon. Not. Roy. Astron. Soc. 386, 2278. DOI .

    Article  ADS  Google Scholar 

  • Droege, W., Gibbs, K., Grunsfeld, J.M., Meyer, P., Newport, B.J., Evenson, P., Moses, D.: 1990, A 153 day periodicity in the occurrence of solar flares producing energetic interplanetary electrons. Astrophys. J. Suppl. 73, 279. DOI .

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2015, Bimodal structure of the solar cycle. Astrophys. J. 803, 15. DOI .

    Article  Google Scholar 

  • Gao, P.X., Shi, X.J., Li, Y.: 2012, Cyclical behavior of solar filaments. Astron. Nachr. 333(7), 576. DOI .

    Article  ADS  Google Scholar 

  • Gao, P.X., Zhong, J.: 2016, The curious temporal behavior of the frequency of different class flares. New Astron. 43, 91. DOI .

    Article  ADS  Google Scholar 

  • Georgieva, K.: 2011, Why the sunspot cycle is double peaked. ISRN Astron. Astrophys. 2011, 437878. DOI .

    Article  Google Scholar 

  • Getling, A.V., Ishikawa, R., Buchnev, A.A.: 2015, Doubts about the crucial role of the rising-tube mechanism in the formation of sunspot groups. Adv. Space Res. 55(3), 862. DOI .

    Article  ADS  Google Scholar 

  • Getling, A.V., Ishikawa, R., Buchnev, A.A.: 2016, Development of active regions: flows, magnetic-field patterns and bordering effect. Solar Phys. 291, 371. DOI .

    Article  ADS  Google Scholar 

  • Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P.: 2002, Advanced spectral methods for climatic time series. Rev. Geophys. 40, 3.1. DOI .

    Article  Google Scholar 

  • Gomez, A., Curto, J.J., Gras, C.: 2014, Evolution of sunspot characteristics in Cycle 23. Solar Phys. 289, 91. DOI .

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: 2009, Solar cycle forecasting. Space Sci. Rev. 144, 401. DOI .

    Article  ADS  Google Scholar 

  • Ichimoto, K., Kubota, J., Suzuki, M., Tohmura, I., Kurokawa, H.: 1985, Periodic behaviour of solar flare activity. Nature 316, 422. DOI .

    Article  ADS  Google Scholar 

  • Javaraiah, J.: 2013, Long-term temporal variations in the areas of sunspot groups. Adv. Space Res. 52, 963. DOI .

    Article  ADS  Google Scholar 

  • Jenkins, G.M., Watts, D.G.: 1969, Spectral Analysis and Its Applications, Holden-Day, London.

    MATH  Google Scholar 

  • Kilcik, A., Ozguc, A., Rozelot, J.P., Atac, T.: 2010, Periodicities in solar flare index for Cycles 21 – 23 revisited. Solar Phys. 264, 255. DOI .

    Article  ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Ozguc, A., Rozelot, J.P., Cao, W.: 2011, Time distributions of large and small sunspot groups over four solar cycles. Astrophys. J. 731, 30. DOI .

    Article  ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V.B., Ozguc, A., Rozelot, J.P.: 2014a, Solar Cycle 24: curious changes in the relative numbers of sunspot group types. Astrophys. J. Lett. 794, L2. DOI .

    Article  ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V.B., Ozguc, A., Rozelot, J.P.: 2014b, Sunspot count periodicities in different Zurich sunspot group classes since 1986. Solar Phys. 289, 4365. DOI .

    Article  ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V., Clette, F., Ozguc, A., Rozelot, J.P.: 2016, Active latitude oscillations observed on the Sun. Solar Phys. 291, 1077. DOI .

    Article  ADS  Google Scholar 

  • Kile, J.N., Cliver, E.V.: 1991, A search for the 154 day periodicity in the occurrence rate of solar flares using Ottawa 2.8 GHz burst data, 1955 – 1990. Astrophys. J. 370, 442. DOI .

    Article  ADS  Google Scholar 

  • Krause, F., Radler, K.H.: 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory, Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • Lara, A., Borgazzi, A., Mendes, O., Rosa, R.R., Domingues, M.O.: 2008, Short-period fluctuations in coronal mass ejection activity during Solar Cycle 23. Solar Phys. 248, 155. DOI .

    Article  ADS  Google Scholar 

  • Lean, J.L., Brueckner, G.E.: 1989, Intermediate-term solar periodicities – 100 – 500 days. Astrophys. J. 337, 568. DOI .

    Article  ADS  Google Scholar 

  • Lefevre, L., Clette, F.: 2011, A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron. Astrophys. 536, L11. DOI .

    Article  ADS  Google Scholar 

  • Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI .

    Article  ADS  Google Scholar 

  • Lou, Y.Q., Wang, Y.M., Fan, Z., Wang, J.X., Wang, S.: 2003, Periodicities in solar coronal mass ejections. Mon. Not. Roy. Astron. Soc. 345, 809. DOI .

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251. DOI .

    Article  ADS  Google Scholar 

  • Morlet, J., Arens, G., Forgeau, I., Giard, D.: 1982, Wave propagation and sampling theory. Geophysics 47, 203. DOI .

    Article  ADS  Google Scholar 

  • Mufti, S., Shah, G.N.: 2011, Solar-geomagnetic activity influence on Earth’s climate. J. Atmos. Solar-Terr. Phys. 73, 1607. DOI .

    Article  ADS  Google Scholar 

  • Nagovitsyn, Y.A., Pevtsov, A.A., Livingston, W.C.: 2012, On a possible explanation of the long-term decrease in sunspot field strength. Astrophys. J. Lett. 758, L20. DOI .

    Article  ADS  Google Scholar 

  • Nagovitsyn, Y.A., Pevtsov, A.A., Osipova, A.A., Tlatov, A.G., Miletskii, E.V., Nagovisyna, E.Y.: 2016, Two populations of sunspots and secular variations of their characteristics. Astron. Lett. 42, 703. DOI .

    Article  ADS  Google Scholar 

  • Obridko, V.N., Badalyan, N.: 2014, Cyclic and secular variations sunspot groups with various scale. Astron. Rep. 58, 936. DOI .

    Article  ADS  Google Scholar 

  • Obridko, V.N., Nagovitsyn, Y.A., Georgieva, K.: 2012, The unusual sunspot minimum: challenge to the solar dynamo theory. In: The Sun: New Challenges, Astron. Space Sci. Proc. 30, Springer, Berlin, 1. DOI .

    Chapter  Google Scholar 

  • Obridko, V.N., Shelting, B.D.: 2008, On prediction of the strength of the 11-year Solar Cycle No. 24. Solar Phys. 248, 191. DOI .

    Article  ADS  Google Scholar 

  • Oliver, R., Carbonell, M., Ballester, J.L.: 1992, Intermediate-term periodicities in solar activity. Solar Phys. 137, 141. DOI .

    Article  ADS  Google Scholar 

  • Ozguc, A., Atac, T.: 1989, Periodic behavior of solar flare index during solar cycles 20 and 21. Solar Phys. 123, 357. DOI .

    Article  ADS  Google Scholar 

  • Ozguc, A., Atac, T.: 1994, The 73-day periodicity of the flare index during the current solar cycle 22. Solar Phys. 150, 339. DOI .

    Article  ADS  Google Scholar 

  • Ozguc, A., Atac, T., Rybak, J.: 2002, Flare index variability in the ascending branch of solar cycle 23. J. Geophys. Res. 107, SSH 11. DOI .

    Article  Google Scholar 

  • Ozguc, A., Atac, T., Rybak, J.: 2003, Temporal variability of the flare index (1966 – 2001). Solar Phys. 214, 375. DOI .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J. 122, 293. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7, 6. DOI .

    Article  ADS  Google Scholar 

  • Pipin, V.V.: 2015, Dependence of magnetic cycle parameters on period of rotation in non-linear solar-type dynamos. Mon. Not. Roy. Astron. Soc. 451, 1528. DOI .

    Article  ADS  Google Scholar 

  • Pipin, V.V., Kosovichev, A.G.: 2014, Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo model. Astrophys. J. 785, 12. DOI .

    Article  Google Scholar 

  • Prestes, A., Rigozo, N.R., Echer, E., Vieira, L.E.A.: 2006, Spectral analysis of sunspot number and geomagnetic indices (1868 – 2001). J. Atmos. Solar-Terr. Phys. 68, 182. DOI .

    Article  ADS  Google Scholar 

  • Rieger, E., Kanbach, G., Reppin, C., Share, G.H., Forrest, D.J., Chupp, E.L.: 1984, A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623. DOI .

    Article  ADS  Google Scholar 

  • Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583. DOI .

    Article  ADS  Google Scholar 

  • Scafetta, N., Willson, R.C.: 2013, Multiscale comparative spectral analysis of satellite total solar irradiance measurements from 2003 to 2013 reveals a planetary modulation of solar activity and its nonlinear dependence on the 11 yr solar cycle. Pattern Recogn. Phys. 1, 123. DOI .

    Article  ADS  Google Scholar 

  • Sello, S.: 2003, Wavelet entropy and the multi-peaked structure of solar cycle maximum. New Astron. 8, 105. DOI .

    Article  ADS  Google Scholar 

  • Sokoloff, D., Fioc, M., Nesme-Ribes, E.: 1995, Asymptotic properties of dynamo wave. Magnetohydrodynamics 31, 18.

    MathSciNet  MATH  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61.

    Article  ADS  Google Scholar 

  • Upton, L., Hathaway, D.H.: 2014, Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5. DOI .

    Article  ADS  Google Scholar 

  • Verma, V.K., Joshi, G.C., Uddin, W., Paliwal, D.C.: 1991, Search for a 152 – 158 days periodicity in the occurrence rate of solar flares inferred from spectral data of radio bursts. Astron. Astrophys. Suppl. Ser. 90, 83.

    ADS  Google Scholar 

  • Wheatland, M.S.: 2015, Estimating electric current densities in solar active regions. Solar Phys. 290, 1147. DOI .

    Article  ADS  Google Scholar 

  • Yadav, R.K., Gastine, T., Christensen, U.R., Reiners, A.: 2015, Formation of starspots in self-consistent global dynamo models: polar spots on cool stars. Astron. Astrophys. 573, 14. DOI .

    Article  Google Scholar 

  • Zieba, S., Maslowski, J., Michalec, A., Kulak, A.: 2001, Periodicities in data observed during the minimum and the rising phase of solar cycle 23; years 1996 – 1999. Astron. Astrophys. 377, 297. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All flaring and non-flaring AR data used in this study were taken from the Space Weather Prediction Center (SWPC). The wavelet analysis software package was created by C. Torrence and G. Compo, and it is available at paos.colorado.edu/research/wavelets/ . The MTM analysis software is available from research.atmos.ucla.edu/ . This study was supported by the Scientific and Technical Council of Turkey by the Project of 115F031. V. Yurchyshyn acknowledges support from AFOSR FA9550-15-1-0322 and NSF AST-1614457 grants and KASI. J.P. Rozelot acknowledges a visitor scientist grant from the International Space Science Institute in Bern (Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kilcik.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilcik, A., Yurchyshyn, V., Donmez, B. et al. Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions. Sol Phys 293, 63 (2018). https://doi.org/10.1007/s11207-018-1285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1285-6

Keywords

Navigation