Skip to main content
Log in

Solar Cycle Forecasting

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Predicting the behavior of a solar cycle after it is well underway (2–3 years after minimum) can be done with a fair degree of skill using auto-regression and curve fitting techniques that don’t require any knowledge of the physics involved. Predicting the amplitude of a solar cycle near, or before, the time of solar cycle minimum can be done using precursors such as geomagnetic activity and polar fields that do have some connection to the physics but the connections are uncertain and the precursors provide less reliable forecasts. Predictions for the amplitude of cycle 24 using these precursor techniques give drastically different values. Recently, dynamo models have been used directly with assimilated data to predict the amplitude of sunspot cycle 24 but have also given significantly different predictions. While others have questioned both the predictability of the solar cycle and the ability of current dynamo models to provide predictions, it is clear that cycle 24 will help to discriminate between some opposing dynamo models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.S. Ahluwalia, The predicted size of cycle 23 based on the inferred three-cycle quasi-periodicity of the planetary index Ap. J. Geophys. Res. 103(A6), 12,103–12,109 (1998)

    Article  ADS  Google Scholar 

  • H.W. Babcock, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572–587 (1961)

    Article  ADS  Google Scholar 

  • G.M. Brown, What determines sunspot maximum? Mon. Not. Roy. Astron. Soc. 174, 185–190 (1976)

    ADS  Google Scholar 

  • P.J. Bushby, S.T. Tobias, On predicting the solar cycle using mean-field models. Astrophys. J. 661, 1289–1296 (2007)

    Article  ADS  Google Scholar 

  • R. Cameron, M. Schüssler, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801–811 (2007)

    Article  ADS  Google Scholar 

  • A.R. Choudhuri, P. Chatterjee, J. Jiang, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103 (2007)

    Article  ADS  Google Scholar 

  • M. Dikpati, P. Charbonneau, A Babcock-Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508–520 (1999)

    Article  ADS  Google Scholar 

  • M. Dikpati, G. de Toma, P.A. Gilman, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, L05102 (2006)

    Article  Google Scholar 

  • M. Dikpati, G. de Toma, P.A. Gilman, Polar flux, cross-equatorial flux, and dynamo generated tachocline toroidal flux as predictors of solar cycles. Astrophys. J. 675, 920–930 (2008)

    Article  ADS  Google Scholar 

  • W. Elling, H. Schwentek, Fitting the sunspot cycles 10-21 by a modified F-distribution density function. Sol. Phys. 137, 155–165 (1992)

    Article  ADS  Google Scholar 

  • J. Feynman, Geomagnetic and solar wind cycles, 1900–1975. J. Geophys. Res. 87(A8), 6153–6162 (1982)

    Article  ADS  Google Scholar 

  • W. Gleissberg, A long-periodic fluctuation of the Sun-spot numbers. The Observatory 62, 158–159 (1939)

    ADS  Google Scholar 

  • M.N. Gnevyshev, A.I. Ohl, On the 22-year solar activity cycle. Astron. Z. 25, 18–20 (1948)

    Google Scholar 

  • K.L. Harvey, O.R. White, What is solar cycle minimum? J. Geophys. Res. 104(A9), 19,759–19,764 (1999)

    Article  ADS  Google Scholar 

  • D.H. Hathaway, Doppler measurements of the Sun’s meridional flow. Astrophys. J. 460, 1027–1033 (1996)

    Article  ADS  Google Scholar 

  • D.H. Hathaway, R.M. Wilson, E.J. Reichmann, The shape of the solar cycle. Sol. Phys. 151, 177–190 (1994)

    Article  ADS  Google Scholar 

  • D.H. Hathaway, R.M. Wilson, Geomagnetic activity indicates large amplitude for sunspot cycle 24. Geophys. Res. Lett. 33, L18101 (2006)

    Article  ADS  Google Scholar 

  • D.H. Hathaway, R.M. Wilson, E.J. Reichmann, A synthesis of solar cycle prediction techniques. J. Geophys. Res. 104(A10), 22,375—22,388 (1999)

    Article  ADS  Google Scholar 

  • J. Javaraiah, North-south asymmetry in solar activity: predicting the amplitude of the next solar cycle. Mon. Not. R. Astron. Soc. 377, L34–L38 (2007)

    Article  ADS  Google Scholar 

  • J.A. McKinnon, ‘Sunspot numbers 1610–1985 based on sunspot-activity in the years 1610–1960, Rep. UAG-95 World Data Center A for Sol.-Terr. Phys., Boulder, Colo. (1987), 105 pp

  • A.G. McNish, J.V. Lincoln, Prediction of sunspot numbers. Trans. AGU 30, 673–685 (1949)

    Google Scholar 

  • A.I. Ohl, Forecast of sunspot maximum number of cycle 20. Solice Danie 9, 84 (1966)

    Google Scholar 

  • K.H. Schatten, S. Sofia, Forecast of an exceptionally large even-numbered solar cycle. Geophys. Res. Lett. 14(6), 632–635 (1987)

    Article  ADS  Google Scholar 

  • K.H. Schatten, P.H. Scherrer, L. Svalgaard, J.M. Wilcox, Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett. 5(5), 411–414 (1978)

    Article  ADS  Google Scholar 

  • S.K. Solanki, N.A. Krivova, M. Schüssler, M. Fligge, Search for a relationship between solar cycle amplitude and length. Astron. Astrophys. 396, 1029–1035 (2002)

    Article  ADS  Google Scholar 

  • J.Q. Stewart, H.A.A. Panofsky, The mathematical characteristics of sunspot variations. Astrophys. J. 88, 385–407 (1938)

    Article  MATH  ADS  Google Scholar 

  • L. Svalgaard, E.W. Cliver, Y. Kamide, Sunspot cycle 24: Smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104 (2005)

    Article  Google Scholar 

  • R.J. Thompson, A technique for predicting the amplitude of the solar cycle. Sol. Phys. 148, 383–388 (1993)

    Article  ADS  Google Scholar 

  • S. Tobias, D. Hughes, N. Weiss, Unpredictable Sun leaves researchers in the dark. Nature 442, 26 (2006)

    Article  ADS  Google Scholar 

  • M. Waldmeier, Neue eigenschaften der sonnenfleckenkurve. Astron. Mitt. Zurich 14(133), 105–130 (1935)

    Google Scholar 

  • M. Waldmeier, The sunspot-activity in the years 1610–1960, Zürich Schulthess, Zürich (1961), 171 pp

  • R.M. Wilson, D.H. Hathaway, E.J. Reichmann, An estimate for the size of cycle 23 based on near minimum conditions. J. Geophys. Res. 103(A4), 6595–6603 (1998)

    Article  ADS  Google Scholar 

  • R. Wolf, Nachrichten von der Sternwarte in Bern. Sonnenflecken Beobachtungen in der zweiten Hafte des Jahres 1851. Naturf. Gesell. Bern Mitt. 229/230, 41–48 (1852)

    Google Scholar 

  • R. Wolf, Abstract of his latest results. Mon. Not. R. Astron. Soc. 21, 77–78 (1861)

    ADS  Google Scholar 

  • A.R. Yeates, D. Nandy, D.H. Mackay, Exploring the physical basis of solar cycle predictions: Flux transport dynamics and persistence of memory in advection- vs. diffusion-dominated solar convection zones. Astrophys. J. 673, 544–556 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Hathaway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hathaway, D.H. Solar Cycle Forecasting. Space Sci Rev 144, 401–412 (2009). https://doi.org/10.1007/s11214-008-9430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-008-9430-4

Keywords

Navigation