Skip to main content
Log in

The Most Intense Electron-Scale Current Sheets in the Solar Wind

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Previous analysis of magnetohydrodynamic-scale currents in high-speed solar wind near 1 AU suggests that the most intense current-carrying structures occur at electron scales and are characterized by average current densities on the order of \(1~\mbox{pA}/\mbox{cm}^{2}\). Here, this prediction is verified by examining the effects of the measurement bandwidth and/or measurement resolution on the analysis of synthetic solar wind signals. Assuming Taylor’s hypothesis holds for the energetically dominant fluctuations at kinetic scales, the results show that when \(\nu_{c}\gg \nu_{b}\), where \(\nu_{c}\) is the measurement bandwidth and \(\nu_{b} \approx 1/3~\mbox{Hz}\) is the break frequency, the average scale of the most intense fluctuations in the current density proxy is approximately \(1/\nu_{c}\), and the average peak current density is a weakly increasing function that scales approximately like \(\nu_{c}^{0.1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A. (eds.): 1972, Handbook of Mathematical Functions with formulas, Graphs, and Mathematical Tables, 10th edn., National Bureau of Standards, Washington.

    MATH  Google Scholar 

  • Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S.J., Robert, P.: 2009, Universality of solar wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103, 165003.

    Article  ADS  Google Scholar 

  • Barakat, R.: 1961, Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials. Math. Comput. 15(73), 7.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, C.H.K., Salem, C.S., Bonnell, J.W., Mozer, F.S., Bale, S.D.: 2012, Density fluctuation spectrum of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 109(3), 035001. DOI .

    Article  ADS  Google Scholar 

  • Cramér, H., Leadbetter, M.R.: 1967, Stationary and Related Stochastic Processes, Wiley, New York.

    MATH  Google Scholar 

  • Cuyt, A., Petersen, V.B., Verdonk, B., Waadeland, H., Jones, W.B.: 2008, Handbook of Continued Fractions for Special Functions, Springer, New York.

    MATH  Google Scholar 

  • Davies, R.B., Harte, D.S.: 1987, Tests for Hurst effect. Biometrika 74(1), 95. DOI .

    Article  MathSciNet  MATH  Google Scholar 

  • Dietrich, C.R., Newsam, G.N.: 1997, Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J. Sci. Comput. 18, 1088. DOI .

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein, M.L., Roberts, D.A., Matthaeus, W.H.: 1995, Magnetohydrodynamic turbulence in the solar wind. Annu. Rev. Astron. Astrophys. 33, 283. DOI .

    Article  ADS  Google Scholar 

  • Jones, W.B., Thron, W.J.: 1974, Numerical stability in evaluating continued fractions. Math. Comput. 28(127), 795. http://www.jstor.org/stable/2005701 .

    Article  MathSciNet  MATH  Google Scholar 

  • Leamon, R.J., Smith, C.W., Ness, N.F., Matthaeus, W.H., Wong, H.K.: 1998, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775. DOI .

    Article  ADS  Google Scholar 

  • Lindgren, G.: 2013, Stationary Stochastic Processes: Theory and Applications, CRC Press, Boca Raton.

    MATH  Google Scholar 

  • Lindquist, A., Picci, G.: 2015, Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification, Springer, Berlin.

    Book  MATH  Google Scholar 

  • Papoulis, A.: 1984, Probability, Random Variables, and Stochastic Processes, 2nd edn., McGraw–Hill, New York.

    MATH  Google Scholar 

  • Podesta, J.J.: 2017, The most intense current sheets in the high speed solar wind near 1 AU. J. Geophys. Res. DOI .

    Google Scholar 

  • Podesta, J.J., Borovsky, J.E.: 2016, Relationship between the durations of jumps in solar wind time series and the frequency of the spectral break. J. Geophys. Res. 121, 1817. DOI .

    Article  Google Scholar 

  • Podesta, J.J., Roberts, D.A., Goldstein, M.L.: 2007, Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J. 664, 543. DOI .

    Article  ADS  Google Scholar 

  • Sahraoui, F., Goldstein, M.L., Robert, P., Khotyaintsev, Y.V.: 2009, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102(23), 231102. DOI .

    Article  ADS  Google Scholar 

  • Sahraoui, F., Huang, S.Y., Belmont, G., Goldstein, M.L., Rétino, A., Robert, P., De Patoul, J.: 2013, Scaling of the electron dissipation range of solar wind turbulence. Astrophys. J. 777, 15. DOI .

    Article  ADS  Google Scholar 

  • Shinozuka, M., Deodatis, G.: 1991, Simulation of stochastic processes by spectral representation. Appl. Mech. Rev. 44, 191. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Smith, C.W., Hamilton, K., Vasquez, B.J., Leamon, R.J.: 2006, Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. 645, L85. DOI .

    Article  ADS  Google Scholar 

  • Watson, G.N.: 1944, A Treatise on the Theory of Bessel Functions, 2nd edn., Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by NASA’s Supporting Research and Technology Program and by the NSF Solar Terrestrial Physics Program. Useful discussions with Joe Borovsky are gratefully acknowledged. There are no potential conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Podesta.

Appendix A: ACF of the Derivative of a Stationary Process

Appendix A: ACF of the Derivative of a Stationary Process

The mean of a stationary process \(x(t)\) is constant. The ACF of a zero-mean stationary process \(x(t)\) is \(R_{x}(\tau)=\langle x(t+\tau)x(t)\rangle\). Hence,

$$ \frac{\mathrm{d}R_{x}}{\mathrm{d}\tau}= \bigl\langle x'(t+\tau)x(t)\bigr\rangle = \bigl\langle x'(t)x(t-\tau)\bigr\rangle , $$
(A.1)

where the last equality follows from stationarity. Likewise,

$$ \frac{\mathrm{d}^{2}R_{x}}{\mathrm{d}\tau^{2}}= -\bigl\langle x'(t)x'(t-\tau)\bigr\rangle = -\bigl\langle x'(t+\tau)x'(t)\bigr\rangle . $$
(A.2)

The quantity on the far right-hand side of Equation (A.2) is \(-R_{x'}(\tau)\), that is, minus one times the ACF of \(x'(t)=\mathrm{d}x/{\mathrm{d}}t\). Thus

$$ R_{x'}(\tau)=-\frac{\mathrm{d}^{2}R_{x}}{\mathrm{d}\tau^{2}}. $$
(A.3)

The Fourier transform of this equation yields \(S_{x'}(\omega)=\omega^{2}S_{x}(\omega)\). For an alternate derivation see Equation (9-109) in Papoulis (1984).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podesta, J.J. The Most Intense Electron-Scale Current Sheets in the Solar Wind. Sol Phys 292, 61 (2017). https://doi.org/10.1007/s11207-017-1087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1087-2

Keywords

Navigation