Skip to main content
Log in

Improved Determination of the Location of the Temperature Maximum in the Corona

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The most used method to calculate the coronal electron temperature [\(T_{\mathrm{e}} (r)\)] from a coronal density distribution [\(n_{\mathrm{e}} (r)\)] is the scale-height method (SHM). We introduce a novel method that is a generalization of a method introduced by Alfvén (Ark. Mat. Astron. Fys. 27, 1, 1941) to calculate \(T_{\mathrm{e}}(r)\) for a corona in hydrostatic equilibrium: the “HST” method. All of the methods discussed here require given electron-density distributions [\(n_{\mathrm{e}} (r)\)] which can be derived from white-light (WL) eclipse observations. The new “DYN” method determines the unique solution of \(T_{\mathrm{e}}(r)\) for which \(T_{\mathrm{e}}(r \rightarrow \infty) \rightarrow 0\) when the solar corona expands radially as realized in hydrodynamical solar-wind models. The applications of the SHM method and DYN method give comparable distributions for \(T_{\mathrm{e}}(r)\). Both have a maximum [\(T_{\max}\)] whose value ranges between 1 – 3 MK. However, the peak of temperature is located at a different altitude in both cases. Close to the Sun where the expansion velocity is subsonic (\(r < 1.3\,\mathrm{R}_{\odot}\)) the DYN method gives the same results as the HST method. The effects of the other free parameters on the DYN temperature distribution are presented in the last part of this study. Our DYN method is a new tool to evaluate the range of altitudes where the heating rate is maximum in the solar corona when the electron-density distribution is obtained from WL coronal observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. When Baumbach (1937) published his empirical density model, the origin and properties of the corona had not yet been fully assessed. The existence of two separate WL components was not yet known: the K-corona and the F-corona had not yet been separated by using polarization measurements. Allen (1947) corrected Baumbach’s original density distribution by removing the WL scattered by interplanetary dust particles (i.e. the contribution of the F-corona to the total coronal brightness).

  2. Empirical electron densities obtained in the past are based on the simplifying assumption that \(n_{\mathrm{e}}(r)\) is spherically symmetric. But eclipse observations show that this is generally not the case. Thus the density distribution given by Equation (6) is likely overestimated due to the lack of spherical symmetry, and consequently an ambiguity is introduced by line-of-sight (LOS) integration. Note that this ambiguity on the calculated values of \(n_{\mathrm{e}}(r)\) does not affect the calculated temperatures distribution if these density values are uniformly reduced or enhanced by a constant factor at all radial distances.

  3. Brandt, Michie, and Cassinelli (1965) assumed a radial expansion rate for their solar-wind model: i.e. \(f_{\max} =1\).

  4. When \(\mathrm{u}_{\mathrm{E}} = 0\), hydrostatic equilibrium is recovered and the DYN method gives then the same results as the HST method; indeed, in this case \(u(r) =0\), \(F(r) =0\), and the solutions for Equations (11) and (16) are then identical.

References

  • Alfvén, H.: 1941, On the solar corona. Ark. Mat. Astron. Fys. 27, 1.

    MATH  Google Scholar 

  • Allen, C.W.: 1947, Interpretation of electron densities from coronal brightness. Mon. Not. Roy. Astron. Soc. 107, 426.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J.: 2009, Physics of the Solar Corona, Springer, New York. ISBN 3-540-30765-6.

    Google Scholar 

  • Baumbach, S.: 1937, Strahlung, Ergiebigkeit und Electronendichte der Sonnenkorona. Astron. Nachr. 263, 121.

    Article  ADS  Google Scholar 

  • Brandt, J.C.: 1970, Introduction to the Solar Wind, Freeman, San Francisco.

    Google Scholar 

  • Brandt, J.C., Michie, R.W., Cassinelli, J.P.: 1965, Interplanetary gas, X: coronal temperatures, energy deposition, and the solar wind. Icarus 4, 19.

    Article  ADS  Google Scholar 

  • Chapman, S.: 1957, Notes on the solar corona and the Terrestrial Ionosphere. Smithson. Contrib. Astrophys. 2, 1.

    Article  ADS  Google Scholar 

  • Cranmer, S.R., Kohl, J.L., Noci, G., Antonnucci, E., Tondello, G., Huber, M.C.E., et al.: 1999, An empirical model of a polar Coronal Hole at solar minimum. Astrophys. J. 511, 481.

    Article  ADS  Google Scholar 

  • de Jager, C.: 1979, Structure and dynamics of the solar atmosphere. Handb. Phys. 52, 80.

    ADS  Google Scholar 

  • de Patoul, J., Foulon, C., Riley, P.: 2015, 3D electron density distributions in the solar corona minima: assessment for more realistic solar wind modeling. Astrophys. J. 814, 68.

    Article  ADS  Google Scholar 

  • Deforest, C.E., Lamy, P.L., Llebaria, A.: 2001, Solar plumes lifetime and Coronal Hole expansion: determination from long-term observations. Astrophys. J. 560, 490.

    Article  ADS  Google Scholar 

  • Doyle, J.G., Teriaca, L., Banerjee, D.: 1999, Coronal Hole diagnostics out to 8 RS. Astron. Astrophys. 349, 956.

    ADS  Google Scholar 

  • Ebert, R.W., McComas, D.J., Elliott, H.A., Forsyth, R.J., Gosling, J.T.: 2009, Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: three polar orbits of observations. J. Geophys. Res. 114, A01109. DOI .

    Article  ADS  Google Scholar 

  • Echim, M.M., Lemaire, J., Lie-Svendsen, O.: 2011, A review of solar wind modeling: kinetic and fluid aspects. Surv. Geophys. 12, 53. arXiv . DOI .

    Google Scholar 

  • Edlén, B.: 1942, An attempt to identify the emission lines in the spectrum of the solar corona. Ark. Mat. Astron. Fys. 28B(1), 1.

    Google Scholar 

  • Fisher, R., Guhathakurta, M.: 1995, Physical properties of polar coronal rays and holes as observed with the Spartan 201-01 coronograph. Astrophys. J. Lett. 477, L139.

    ADS  Google Scholar 

  • Gibson, S.E., Fludra, A., Bagenal, F., Biesecker, D., Del Zanna Bromage, B.: 1999, Solar minimum streamer densities and temperatures vising Whole Sun Month coordinated data sets. J. Geophys. Res. 104, 9691.

    Article  ADS  Google Scholar 

  • Habbal, S.R., Esser, R., Arndt, M.B.: 1993, How reliable are Coronal Hole temperatures deduced from observatons? Astrophys. J. 413, 435.

    Article  ADS  Google Scholar 

  • Kayshap, P., Banerjee, D., Srivastava, A.K.: 2015, Diagnostics of a Coronal Hole and the adjacent quiet Sun by the hinode/EUV Imaging Spectrometer (EIS). Solar Phys. 290, 2889. DOI .

    Article  ADS  Google Scholar 

  • Kohl, J.L., Noci, G., Cranmer, S.R., Raymond, J.C.: 2006, Ultraviolet spectroscopy of the extended solar corona. Astron. Astrophys. Rev. 13(1:2), 31. DOI .

    Article  ADS  Google Scholar 

  • Kopp, R.A., Holzer, T.E.: 1976, Dynamics of Coronal Hole regions, I steady polytropic flows with multiple critical points. Solar Phys. 49, 43. DOI .

    Article  ADS  Google Scholar 

  • Koutchmy, S.: 1977, Study of the June 30, 1973 trans-polar Coronal Hole. Solar Phys. 51, 399.

    Article  ADS  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A Coronal Hole and its identification as the source of a high velocity solar wind Stream. Solar Phys. 29, 505. DOI .

    Article  ADS  Google Scholar 

  • Lemaire, J.: 2010, Convective instability of the solar corona: why the solar wind blows. In: Makismovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, P. (eds.) CP1216, Twelfth Inter. Solar Wind Conference, AIP, St Malo, 20. DOI .

    Google Scholar 

  • Lemaire, J., Scherer, M.: 1969, Le champ électrique de polarisation dans l’exosphère ionique polaire. C. R. Math. 269B, 666.

    Google Scholar 

  • Lemaire, J., Scherer, M.: 1970, Model of the polar ion exosphere. Planet. Space Sci. 18, 103.

    Article  ADS  Google Scholar 

  • Lemaire, J., Scherer, M.: 1973, Kinetic model of the solar and polar winds. Rev. Geophys. Space Phys. 11, 427.

    Article  ADS  Google Scholar 

  • Levine, R.H., Altschuler, M.D., Harvey, J.W.: 1977, Solar sources of the interplanetary magnetic field and solar wind. J. Geophys. Res. 82, 106.

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N.: 2007, Basics of the Solar Wind, Cambridge University Press, Cambridge. ISBN-13: 978-0-521-81420-1.

    Book  Google Scholar 

  • Minnaert, M.: 1930, On the continuous spectrum of the corona and its polarisation. Zeits. Astrophyz. 1, 209.

    ADS  MATH  Google Scholar 

  • Munro, R.H., Jackson, B.V.: 1977, Physical properties of a polar Coronal Hole from 2 to \(5\, \mathrm{R}_{\mathrm{S}}\). Astrophys. J. 213, 874.

    Article  ADS  Google Scholar 

  • Parenti, S., Bromage, B.J.I., Poletto, G., Noci, G., Raymond, J.C., Bromage, G.E.: 2000, Characteristics of solar coronal streamers: element abundance, temperature and density from coordinated CDS and UVCS SOHO observations. Astron. Astrophys. 363, 800.

    ADS  Google Scholar 

  • Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 2010, Kinetic and hydrodynamic representations of coronal expansion and the solar wind. In: Makismovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, P. (eds.) CP1276, Twelfth Intern. Solar Wind Conference, AIP, St Malo, 3. DOI .

    Google Scholar 

  • Pierrard, V., Borremans, K., Stegen, K., Lemaire, J.F.: 2014, Coronal temperature profiles obtained from kinetic models, and from brightness measurements during solar eclipses. Solar Phys. 298, 183. arXiv . DOI .

    Article  ADS  Google Scholar 

  • Pottasch, S.R.: 1960, Use of the equation of hydrostatic equilibrium in determining the temperature distribution in the outer solar atmosphere. Astrophys. J. 131, 68.

    Article  ADS  Google Scholar 

  • Saito, K.: 1970, A non-spherical axisymmetric model of the solar corona of minimum type. Ann. Tokyo Astron. Obs. 12, 53.

    ADS  Google Scholar 

  • Schuster, M.: 1880, On polarization of the solar corona. Mon. Not. Roy. Astron. Soc. 60, 35.

    Google Scholar 

  • Scudder, J.D.: 1992, Why all stars possess circumstellar temperature inversions. Astrophys. J. 398, 319.

    Article  ADS  Google Scholar 

  • Sitter, E.C., Guhathakurta, M.: 1999, Semi-empirical two-dimensional magneto hydrodynamic model of the solar corona and interplanetary medium. Astrophys. J. 523, 812.

    Article  ADS  Google Scholar 

  • van de Hulst, H.C.: 1950, The electron density of the solar corona. Bull. Astron. Inst. Neth. 11, 135.

    ADS  Google Scholar 

  • van de Hulst, H.C.: 1953, The chromosphere and the corona. In: Kuiper, G. (ed.) The Sun, University of Chicago Press, Chicago, 207.

    Google Scholar 

  • Wang, Y.-M.: 1995, Empirical relationship between the magnetic field and mass and energy flux in the source region of the solar wind. J. Geophys. Res. 105, 25133.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Jr. Sheeley, N.R.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Jr. Sheeley, N.R.: 2006, Sources of the solar wind at Ulysses during 1990 – 2006. Astrophys. J. 653, 708.

    Article  ADS  Google Scholar 

  • Wilhelm, K., Marsch, E., Dwivedi, B.N., Hassler, D.M., Lemaire, P., Gabriel, A.H., Huber, M.C.E.: 1998, The solar corona above polar Coronal Holes as seen by SUMER on SOHO. Astrophys. J. 500, 1023.

    Article  ADS  Google Scholar 

  • Wilhelm, K., Abbo, L., Auchère, F., Barbey, N., Feng, L., Gabriel, A.H., Giordano, S., Imada, S., Liebbaria, A., Matthaeus, W.H., Poletto, G., Raouafi, N.-E., Suess, S.T., Teriaca, L., Wang, Y.-M.: 2011, Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar Coronal Holes. Astron. Astrophys. Rev. 19, 35. DOI

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Clément Botquin for his efficient assistance in the early work of programming. The open-source computer codes to compute and plot DYN temperature distributions are in FORTRAN and IDL. Copies are available through koen.stegen@oma.be. We wish to thank the Royal Belgian Institute for Space Aeronomy (BIRA-IASB), the Royal Observatory of Belgium (ROB), and BELSPO (Federal Public Planning Service Science Policy) for their support. We acknowledge discussions with Viviane Pierrard (BIRA-IASB), Marius Echim (BIRA-IASB), Hervé Lamy (BIRA-IASB), and Yuriy Voitenko (BIRA-IASB). We are grateful to Jack Scudder (University of Iowa) for his constructive remarks and suggestions concerning the first version of this work, which had been posted 16 December 2011 at arXiv . He encouraged us to submit this work to a refereed international Journal. We appreciate his interest in our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Lemaire.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Appendix: Derivation of the Differential Equation Giving the DYN Temperature Distribution

Appendix: Derivation of the Differential Equation Giving the DYN Temperature Distribution

Let us consider that the electrons and all ion species have the same average bulk velocities [\(\boldsymbol{u}_{j}\)], which are all equal to the (single-fluid) plasma bulk speed [\(\boldsymbol{u}\)]. Note that this postulate is made in single-fluid hydrodynamic models the solar wind: it implies diffusive equilibrium in the multi-component coronal plasma. Although this might be considered as a questionable hypothesis, it will also be adopted here, knowing that it can be relaxed in future more sophisticated formulations.

Furthermore, let us assume that the coronal and solar-wind plasmas are homogeneous, and that \(\alpha = n_{\alpha}/n_{\mathrm{p}}\) is a free input parameter (independent of \(r\) and time). Under such simplifying assumptions the radial component of the bulk velocity can be determined from the flux conservation equation,

$$ u(r) = u_{\mathrm{E}} \bigl[A_{\mathrm{E}}/A(r)\bigr] \bigl[n_{\mathrm{E}}/n_{\mathrm{e}} (r)\bigr], $$
(18)

where \(A(r)\) is the cross-section flow tubes, and \(n_{\mathrm{e}}(r)\) is the radial distribution that is obtained from WL eclipse observations; \(n_{\mathrm{E}}\) is the electron density measured at 1 AU. The subscript “E” designates values at the Earth’s orbit (\(r = 215 \,\mathrm{R}_{\odot}\)).

Following Kopp and Holzer (1976), it has become a common practice to approximate \(A(r)\) by an exponential function of \(r\):

$$\begin{aligned} A(r)/A(1) =& r^{2} f(r) \\ =& r^{2} \bigl\{ f_{\max} \exp\bigl[(r - r_{1})/ \sigma\bigr] + f_{1}\bigr\} / \bigl\{ \exp\bigl[(r - r_{1})/ \sigma\bigr] + 1\bigr\} , \end{aligned}$$
(19)

where \(f_{1} = 1 + (1 - f_{\max}) \exp[(1 - r_{1})/\sigma]\); where \(f_{\max}\) is the total geometrical expansion rate, \(r_{1}\) is the heliocentric distance of most rapid geometrical expansion, and \(\sigma\) is the range over which this takes place in the corona. When \(f_{\max} =1\), then \(f(r) \equiv 1\) and the radial expansion is then recovered, as in early hydrodynamic and kinetic models of the solar wind.

When the average bulk velocities of the electrons and ions are all equal to \(u\), and they are determined by Equation (18), the radial component of the steady-state momentum-transport equations for electrons, protons, and \(\alpha\)-particles are, respectively,

$$\begin{aligned} n_{\mathrm{e}} \mathrm{m}_{\mathrm{e}} u \mathrm{d}u/ \mathrm{d}r + \mathrm{d}p_{\mathrm{e}}/\mathrm{d}r =& - n_{\mathrm{e}} \mathrm{m}_{\mathrm{e}} g - n_{\mathrm{e}} \mathrm{e} E, \end{aligned}$$
(20)
$$\begin{aligned} n_{\mathrm{p}} \mathrm{m}_{\mathrm{H}} u \mathrm{d}u/ \mathrm{d}r + \mathrm{d}p_{\mathrm{p}}/\mathrm{d}r =& - n_{\mathrm{p}} \mathrm{m}_{\mathrm{H}} g + n_{\mathrm{p}} \mathrm{e} E, \end{aligned}$$
(21)
$$\begin{aligned} 4 n_{\alpha} \mathrm{m}_{\mathrm{H}} u \mathrm{d}u/ \mathrm{d}r + \mathrm{d}p_{\alpha}/\mathrm{d}r =& - 4 n_{\alpha} \mathrm{m}_{\mathrm{H}} g + 2 n_{\alpha} \mathrm{e} E, \end{aligned}$$
(22)

where \(g\) is the gravitational acceleration [\(g(r) = g_{\mathrm{o}}/r^{2}\)] and \(E(r)\) is the outward-directed polarization electric field that accelerates the positive charges to supersonic velocities in the SW. Parker (2010) has called this charge-separation electric field that is generated inside coronal plasma by the charge separation the “Lemaire–Scherer” electric field, since Lemaire and Scherer (1970, 1973) emphasized its role in driving the SW expansion.

Concatenation of Equations (20), (21), and (22) leads to the familiar (single-fluid) hydrodynamic momentum equation adopted in hydrodynamic models,

$$ \rho u \mathrm{d}u/\mathrm{d}r + \mathrm{d}p/\mathrm{d}r = \rho g. $$
(23)

The total electrostatic force density [\(\Sigma_{j} \mathrm{Z}_{i} n_{j}\mathrm{e} E\)] has disappeared from Equation (23) because of the neutrality condition: \(n_{\mathrm{e}} = n_{\mathrm{p}} + 2 n_{\alpha}\), or \(n_{\mathrm{e}} = n_{\mathrm{p}} (1 + 2 \alpha)\).

The mass density [\(\Sigma_{j} n_{j} \mathrm{m}_{j}\)] is equal to \(\rho = n_{\mathrm{p}} \mathrm{m}_{\mathrm{H}} + 4 n_{\alpha} \mathrm{m}_{\mathrm{H}} + n_{\mathrm{e}} \mathrm{m}_{\mathrm{e}} \approx (n_{\mathrm{p}} + 4 n_{\alpha} ) \mathrm{m}_{\mathrm{H}} = n_{\mathrm{p}} (1 + 4 \alpha) \mathrm{m}_{\mathrm{H}} = n_{\mathrm{e}} \mu_{\mathrm{e}} \mathrm{m}_{\mathrm{H}}\) where

$$ \mu_{\mathrm{e}} = (1 + 4 \alpha)/(1 + 2 \alpha). $$
(24)

In Equation (23), the total kinetic pressure [\(\Sigma_{j} p_{j} = \Sigma_{j} n_{j} \mathrm{k} T_{j}\)] is given by \(p = p_{\mathrm{e}} + p_{\mathrm{p}} + p_{\alpha} = \nu_{\mathrm{p}} n_{\mathrm{e}} \mathrm{k} T_{\mathrm{e}}\) where

$$ \nu_{\mathrm{p}} = (1+ 2 \alpha + \tau_{\mathrm{p}} + \alpha \tau_{\alpha})/(1 + 2 \alpha) $$
(25)

and where \(\tau_{\mathrm{p}(\alpha)} = T_{\mathrm{p}(\alpha)}/T_{\mathrm{e}}\) are the ratios between the proton or \(\alpha\) temperature and electron temperature; these dimensionless constants are arbitrary input parameters. The mean molecular mass of the plasma is given by \(\mu = \mu_{\mathrm{e}}/\nu_{\mathrm{p}}\).

When the temperature ratios [\(\tau_{\mathrm{p}}\) and \(\tau_{\alpha}\)] are independent of \(r\), the values of \(\mu_{\mathrm{e}}\) and \(\nu_{\mathrm{p}}\) are also independent of \(r\). Since the plasma is assumed to be homogeneous, \(\alpha\) is independent of \(r\). Of course, all of these simplifying assumptions could be relaxed, but at this stage they will serve to investigate the gross influence that these parameters have on the DYN temperature distributions. The results presented here are exploratory steps awaiting more comprehensive observations.

Since the mass of the electron is much smaller than the ion masses, Equation (20) can be approximated by

$$ \mathrm{k} T_{\mathrm{e}} \mathrm{d} \ln n_{\mathrm{e}}/ \mathrm{d}r + \mathrm{d} (\mathrm{k} T_{\mathrm{e}})/\mathrm{d}r \approx - \mathrm{e} E. $$
(26)

This equation allows us to determine the distribution of the Lemaire–Scherer polarization electric field [\(E(r)\)] since the distribution of \(n_{\mathrm{e}}(r)\) is available from WL coronagraphic observations, and \(T_{\mathrm{e}}(r)\) can be calculated by using the DYN method introduced in Section 7.

Replacing \(\rho\) and \(p\) by the expressions given above, and assuming that \(\mu_{\mathrm{e}}\) and \(\nu_{\mathrm{p}}\) are constants independent of \(r\), Equation (23) becomes

$$ n_{\mathrm{e}} \mu_{\mathrm{e}} \mathrm{m}_{\mathrm{H}} u \mathrm{d}u/\mathrm{d}r + \nu_{\mathrm{p}} \mathrm{k} T_{\mathrm{e}} \mathrm{d}n_{\mathrm{e}}/\mathrm{d}r + \nu_{\mathrm{p}} n_{\mathrm{e}} \mathrm{k} \mathrm{d}T_{\mathrm{e}}/\mathrm{d}r = - n_{\mathrm{e}} \mathrm{m}_{\mathrm{H}} \mu_{\mathrm{e}} g_{\mathrm{o}}/r^{2}. $$
(27)

Using Equation (24), (25), and \(\mu = \mu_{\mathrm{e}}/\nu_{\mathrm{p}}\), Alfvén’s “normalization temperature” is determined by

$$ T^{*} = \mathrm{G} \mathrm{M}_{\odot} \mathrm{m}_{\mathrm{H}} \mu_{\mathrm{e}}/\nu_{\mathrm{p}} \mathrm{k}\, \mathrm{R}_{\odot} = g_{\mathrm{o}} \mathrm{R}_{\odot} \mathrm{m}_{\mathrm{H}} \mu/ \mathrm{k}. $$
(28)

This expression depends on the concentration of \(\mbox{He}^{++}\) ions, and on the ratios between the temperatures of the ions and the electron temperature: \(\tau_{\mathrm{p}(\alpha)} = T_{\mathrm{p}(\alpha)}/T_{\mathrm{e}}\).

Using the solar radius as the unit for \(r\), and \(y = T_{\mathrm{e}}/T^{*}\), Equation (27) becomes

$$ \mathrm{d}y/\mathrm{d}r + y \mathrm{d}\ln n_{\mathrm{e}}/ \mathrm{d}r = - \bigl(1/r^{2}\bigr) + (\mathrm{m}_{\mathrm{H}} \mu/ \mathrm{k} T^{*}) u \mathrm{d}u/\mathrm{d}r. $$
(29)

The left-hand side of Equation (29) corresponds to the hydrostatic-pressure gradient. The first term in the right-hand side corresponds to the downward gravitational force, and the last term corresponds to the inertia force, which determines the outward acceleration of coronal plasma.

The general solutions of this first-order differential equation diverge when \(r \rightarrow \infty\). The solution of this equation for which \(y(r \rightarrow \infty) = 0\) is determined by

$$ y = \bigl[1/n_{\mathrm{e}} (r)\bigr] \int_{\infty}^{r} \bigl\{ n_{\mathrm{e}} \bigl(r '\bigr)/r^{\prime2} \bigr\} \bigl[1 + F\bigl(r '\bigr)\bigr] \mathrm{d}r ', $$
(30)

where \(F(r)\) is the ratio of the radial components of the inertial acceleration and the gravitational deceleration

$$ F(r) = (\mathrm{m}_{\mathrm{H}} \mu_{\mathrm{e}}/ \nu_{\mathrm{p}} \mathrm{k} T^{*}) r^{2} u \mathrm{d}u/\mathrm{d}r = r^{2} (u \mathrm{d}u/\mathrm{d}r)/g_{\mathrm{o}} \mathrm{R}_{\odot}. $$
(31)

The function \(F(r)\) is determined by Equations (18) and (19), because the distribution of \(n_{\mathrm{e}}(r)\) is determined as a function of \(r\) by Equation (24). Since \(r^{2} (u \mathrm{d}u/\mathrm{d}r)\) tends to zero for \(r \rightarrow \infty\), \(\lim F(r \rightarrow \infty) = 0\).

It can be seen that Equation (30) is a generalization of the hydrostatic solution; indeed, when \(u(r) \equiv 0\), \(F(r) \equiv 0\), and Equation (30) is then identical to Equation (28) of the main text.

Thus the solution in Equation (30) introduced in this article should be used to determine electron-temperature distributions when the solar corona expands radially, instead of being in hydrostatic equilibrium as was assumed before 1958. Of course, close enough to the base of the solar corona, where the expansion velocity is small (subsonic), the HST temperatures are fully appropriate, while the SHM temperatures are not.

Further generalizations of Equation (30) can be envisaged by assuming anisotropic pressures and temperatures for the coronal ions and electrons, as well as non-uniform distributions for the relative concentrations of the minor ions [\(\alpha = n_{\alpha} (r)/n_{\mathrm{p}}(r)\)] or of the temperature ratios [\(\tau_{\mathrm{p}(\alpha)} = T_{\mathrm{p}(\alpha)}/T_{\mathrm{e}}\)].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemaire, J.F., Stegen, K. Improved Determination of the Location of the Temperature Maximum in the Corona. Sol Phys 291, 3659–3683 (2016). https://doi.org/10.1007/s11207-016-1001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-016-1001-3

Keywords

Navigation