Advertisement

Solar Physics

, Volume 291, Issue 6, pp 1711–1738 | Cite as

Flaring Rates and the Evolution of Sunspot Group McIntosh Classifications

  • Aoife E. McCloskey
  • Peter T. Gallagher
  • D. Shaun Bloomfield
Article

Abstract

Sunspot groups are the main source of solar flares, with the energy to power them being supplied by magnetic-field evolution (e.g. flux emergence or twisting/shearing). To date, few studies have investigated the statistical relation between sunspot-group evolution and flaring, with none considering evolution in the McIntosh classification scheme. Here we present a statistical analysis of sunspot groups from Solar Cycle 22, focusing on 24-hour changes in the three McIntosh classification components. Evolution-dependent \(\ge \mathrm{C}1.0\), \(\ge \mathrm{M}1.0\), and \(\ge \mathrm{X}1.0\) flaring rates are calculated, leading to the following results: i) flaring rates become increasingly higher for greater degrees of upward evolution through the McIntosh classes, with the opposite found for downward evolution; ii) the highest flaring rates are found for upward evolution from larger, more complex, classes (e.g. Zurich D- and E-classes evolving upward to F-class produce \(\ge \mathrm{C}1.0\) rates of \(2.66\pm 0.28\) and \(2.31 \pm 0.09\) flares per 24 hours, respectively); iii) increasingly complex classes give higher rates for all flare magnitudes, even when sunspot groups do not evolve over 24 hours. These results support the hypothesis that injection of magnetic energy by flux emergence (i.e. increasing in Zurich or compactness classes) leads to a higher frequency and magnitude of flaring.

Keywords

Active regions, structure Flares, forecasting Flares, relation to magnetic field Sunspots, magnetic fields Sunspots, statistics 

Notes

Acknowledgements

The authors thank Chris Balch (NOAA/SWPC) for providing the data used in this research. A.E. McCloskey was supported by an Irish Research Council Government of Ireland Postgraduate Scholarship, while D.S. Bloomfield was supported by the European Space Agency PRODEX Programme as well as the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 640216 (FLARECAST project).

References

  1. Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: 2012, Toward reliable benchmarking of solar flare forecasting methods. Astrophys. J. Lett. 747, L41.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Bloomfield, D.S., Gallagher, P.T., Marquette, W.H., Milligan, R.O., Canfield, R.C.: 2016, Performance of major flare watches from the max millennium program (2001 – 2010). Solar Phys. 291, 411.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bornmann, P.L., Shaw, D.: 1994, Flare rates and the McIntosh active-region classifications. Solar Phys. 150, 127.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Cortie, A.L.: 1901, On the types of sun-spot disturbances. Astrophys. J. 13, 260.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Crown, M.D.: 2012, Validation of the NOAA Space Weather Prediction Center’s solar flare forecasting look-up table and forecaster-issued probabilities. Space Weather 10, S06006.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., et al.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759, 71.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Falconer, D.A., Moore, R.L., Gary, G.A.: 2008, Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys. J. 689, 1433.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Gallagher, P.T., Moon, Y.-J., Wang, H.: 2002, Active-region monitoring and flare forecasting, I: data processing and first results. Solar Phys. 209, 171.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661, L109.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Giovanelli, R.G.: 1939, The relations between eruptions and sunspots. Astrophys. J. 89, 555.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Hahn, M., Gaard, S., Jibben, P., Canfield, R.C., Nandy, D.: 2005, Spatial relationship between twist in active region magnetic fields and solar flares. Astrophys. J. 629, 1135.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, The magnetic polarity of sun-spots. Astrophys. J. 49, 153.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Künzel, H.: 1960, Die Flare-Häufigkeit in Fleckengruppen unterschiedlicher Klasse und magnetischer Struktur. Astron. Nachr. 285, 271.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Lee, K., Moon, Y.-J., Lee, J.-Y., Lee, K.-S., Na, H.: 2012, Solar flare occurrence rate and probability in terms of the sunspot classification supplemented with sunspot area and its changes. Solar Phys. 281, 639.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Murray, S.A., Bloomfield, D.S., Gallagher, P.T.: 2012, The evolution of sunspot magnetic fields associated with a solar flare. Solar Phys. 277, 45.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Murray, S.A., Bloomfield, D.S., Gallagher, P.T.: 2013, Evidence for partial Taylor relaxation from changes in magnetic geometry and energy during a solar flare. Astron. Astrophys. 550, A119.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Schmieder, B., Hagyard, M.J., Guoxiang, A., Hongqi, Z., Kalman, B., Gyori, L., et al.: 1994, Relationship between magnetic field evolution and flaring sites in AR 6659 in June 1991. Solar Phys. 150, 199.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Schrijver, C.J., De Rosa, M.L., Title, A.M., Metcalf, T.R.: 2005, The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophys. J. 628, 501.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Snodgrass, H.B., Ulrich, R.K.: 1990, Rotation of Doppler features in the solar photosphere. Astrophys. J. 351, 309.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., et al.: 2013, Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Phys. 285, 295.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Waldmeier, M.: 1947, Heliographische Karten der Photosphäre für das Jahr 1946. Publ. Zür. Obs. 9, 1. Google Scholar
  25. Wheatland, M.S.: 2001, Rates of flaring in individual active regions. Solar Phys. 203, 87.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.School of Physics, Trinity College DublinCollege GreenDublin 2Ireland

Personalised recommendations