Skip to main content
Log in

Kinematic Properties of Slow ICMEs and an Interpretation of a Modified Drag Equation for Fast and Moderate ICMEs

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We report kinematic properties of slow interplanetary coronal mass ejections (ICMEs) identified by SOHO/LASCO, interplanetary scintillation, and in situ observations and propose a modified equation for the ICME motion. We identified seven ICMEs between 2010 and 2011 and compared them with 39 events reported in our previous work. We examined 15 fast (V SOHOV bg>500 km s−1), 25 moderate (0 km s−1V SOHOV bg≤500 km s−1), and 6 slow (V SOHOV bg<0 km s−1) ICMEs, where V SOHO and V bg are the initial speed of ICMEs and the speed of the background solar wind. For slow ICMEs, we found the following results: i) They accelerate toward the speed of the background solar wind during their propagation and reach their final speed by 0.34±0.03 AU. ii) The acceleration ends when they reach 479±126 km s−1; this is close to the typical speed of the solar wind during the period of this study. iii) When γ 1 and γ 2 are assumed to be constants, a quadratic equation for the acceleration a=−γ 2(VV bg)|VV bg| is more appropriate than a linear one a=−γ 1(VV bg), where V is the propagation speed of ICMEs, while the latter gives a smaller χ 2 value than the former. For the motion of the fast and moderate ICMEs, we found a modified drag equation a=−2.07×10−12(VV bg)|VV bg|−4.84×10−6(VV bg). From the viewpoint of fluid dynamics, we interpret this equation as indicating that ICMEs with 0 km s−1VV bg≤2300 km s−1 are controlled mainly by the hydrodynamic Stokes drag force, while the aerodynamic drag force is a predominant factor for the propagation of ICME with VV bg>2300 km s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Asai, K., Ishida, Y., Kojima, M., Maruyama, K., Misawa, H., Yoshimi, N.: 1995, Multi-station system for solar wind observations using the interplanetary scintillation method. J. Geomagn. Geoelectr. 47, 1107 – 1112.

    Article  Google Scholar 

  • Borgazzi, A., Lara, A., Romero-Salazar, L., Ventura, A.: 2008, Transport in the interplanetary medium of coronal mass ejections. Geofis. Int. 47, 301 – 310.

    ADS  Google Scholar 

  • Borgazzi, A., Lara, A., Echer, E., Alves, M.: 2009, Dynamics of coronal mass ejections in the interplanetary medium. Astron. Astrophys. 498, 885 – 889.

    Article  ADS  MATH  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357 – 402.

    Article  ADS  Google Scholar 

  • Brueckner, G., Delaboudiniere, J., Howard, R., Paswaters, S., St. Cyr, O.C., Schwenn, R., Lamy, P., Simnett, G., Thompson, B., Wang, D.: 1998, Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997. Geophys. Res. Lett. 25, 3019 – 3022.

    Article  ADS  Google Scholar 

  • Byrne, J.P., Maloney, S.A., McAteer, R.J., Refojo, J.M., Gallagher, P.T.: 2010, Propagation of an earth-directed coronal mass ejection in three dimensions. Nature Commun. 1, 74.

    Article  ADS  Google Scholar 

  • Cane, H., Richardson, I., St. Cyr, O.C.: 2000, Coronal mass ejections, interplanetary ejecta and geomagnetic storms. Geophys. Res. Lett. 27, 3591 – 3594.

    Article  ADS  Google Scholar 

  • Cargill, P.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135 – 149.

    Article  ADS  Google Scholar 

  • Chen, J.: 1996, Theory of prominence eruption and propagation: Interplanetary consequences. J. Geophys. Res. 101, 27499 – 27520.

    Article  ADS  Google Scholar 

  • Gapper, G., Hewish, A., Purvis, A., Duffett-Smith, P.: 1982, Observing interplanetary disturbances from the ground. Nature 296, 633 – 636.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Cain, J., Ipavich, F.M., Tums, E.O., Bedini, P., Fisk, L.A., et al.: 1998, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497 – 539.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Lepping, R., Kaiser, M., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145 – 148.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M., Howard, R.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207 – 29218.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295 – 313.

    Article  ADS  Google Scholar 

  • Gosling, J., McComas, D., Phillips, J., Bame, S.: 1991, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831 – 7839.

    Article  ADS  Google Scholar 

  • Guhathakurta, M., Fisher, R.: 1998, Solar wind consequences of a coronal hole density profile: Spartan 201-03 coronagraph and Ulysses observations from 1.15 R to 4 AU. Astrophys. J. Lett. 499, L215 – L218.

    Article  ADS  Google Scholar 

  • Hewish, A., Scott, P.F., Wills, D.: 1964, Interplanetary scintillation of small diameter radio sources. Nature 203, 1214 – 1217.

    Article  ADS  Google Scholar 

  • Howard, T.: 2011, Coronal Mass Ejections: An Introduction, Springer, New York, 4.

    Book  Google Scholar 

  • Iju, T., Tokumaru, M., Fujiki, K.: 2013, Radial speed evolution of coronal mass ejections during solar cycle 23. Solar Phys. 288, 331 – 353 (Paper I).

    Article  ADS  Google Scholar 

  • Kojima, M., Kakinuma, T.: 1990, Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 53, 173 – 222.

    Article  ADS  Google Scholar 

  • Lara, A., Flandes, A., Borgazzi, A., Subramanian, P., México, C.U.: 2011, Velocity profile of interplanetary coronal mass ejections beyond 1 AU. J. Geophys. Res. 116, A12102.

    Article  ADS  Google Scholar 

  • Lindsay, G.M., Luhmann, J.G., Russell, C.T., Gosling, J.T.: 1999, Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections. J. Geophys. Res. 104, 12515 – 12524.

    Article  ADS  Google Scholar 

  • Lynch, B.J., Li, Y., Thernisien, A.F.R., Robbrecht, E., Fisher, G.H., Luhmann, J.G., Vourlidas, A.: 2010, Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection. J. Geophys. Res. 115, A07106.

    ADS  Google Scholar 

  • Maloney, S.A., Gallagher, P.T.: 2010, Solar wind drag and the kinematics of interplanetary coronal mass ejections. Astrophys. J. Lett. 724, L127 – L132.

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the inner heliosphere: A study using white-light and scintillation images. Solar Phys. 235, 345 – 368.

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Bougeret, J.L.: 2003, On the deceleration of CMEs in the corona and interplanetary medium deduced from radio and white-light observations. In: Velli, M., Bruno, R., Malara, F. (eds.) Solar Wind Ten: Proceedings of the Tenth International Solar Wind Conference, AIP Conf. Proc. 679, 152 – 155.

    Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties. Solar Phys. 264, 189 – 237.

    Article  ADS  Google Scholar 

  • Rollett, T., Möstl, C., Temmer, M., Veronig, A.M., Farrugia, C.J., Biernat, H.K.: 2012, Constraining the kinematics of coronal mass ejections in the inner heliosphere with in-situ signatures. Solar Phys. 276, 1 – 22.

    Article  Google Scholar 

  • Schwenn, R., Mühlhäuser, K., Marsch, E., Rosenbauer, H.: 1981, Two states of the solar wind at the time of solar activity minimum II. Radial gradient of plasma parameters in fast and slow streams. In: Rosenbauer, H. (ed.) Solar Wind Four. Max-Plank-Institute für Aeronomie, Katlenburg-Lindau, 126 – 130.

    Google Scholar 

  • Shanmugaraju, A., Moon, Y.J., Vrsnak, B., Vrbanec, D.: 2009, Radial evolution of well-observed slow CMEs in the distance range 2 – 30 R . Solar Phys. 257, 351 – 361.

    Article  ADS  Google Scholar 

  • Sheeley, N. Jr., Wang, Y.M., Hawley, S., Brueckner, G., Dere, K., Howard, R., et al.: 1997, Measurements of flow speeds in the corona between 2 and 30 R . Astrophys. J. 484, 472 – 478.

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Gui, B., Ye, P., Wang, S.: 2011, Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Solar Phys. 269, 389 – 400.

    Article  ADS  Google Scholar 

  • Stone, E., Frandsen, A., Mewaldt, R., Christian, E., Margolies, D., Ormes, J., Snow, F.: 1998, The Advanced Composition Explorer. Space Sci. Rev. 86, 1 – 22.

    Article  ADS  Google Scholar 

  • Tappin, S.: 2006, The deceleration of an interplanetary transient from the Sun to 5 AU. Solar Phys. 233, 233 – 248.

    Article  ADS  Google Scholar 

  • Temmer, M., Rollett, T., Möstl, C., Veronig, A., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101 – 112.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Maruyama, K., Maruyama, Y., Ito, H., Iju, T.: 2011, A newly developed UHF radiotelescope for interplanetary scintillation observations: Solar wind imaging facility. Radio Sci. 46, RS0F02.

    Article  Google Scholar 

  • Vourlidas, A., Buzasi, D., Howard, R., Esfandiari, E.: 2002, Mass and energy properties of LASCO CMEs. In: Wilson, A. (ed.) Solar Variability: From Core to Outer Frontiers, ESA SP-506, 91 – 94.

    Google Scholar 

  • Vršnak, B., Gopalswamy, N.: 2002, Influence of the aerodynamic drag on the motion of interplanetary ejecta. J. Geophys. Res. 107, 1019.

    Article  Google Scholar 

  • Vršnak, B., Žic, T., Falkenberg, T., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43.

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., et al.: 2013, Propagation of interplanetary coronal mass ejections: The drag-based model. Solar Phys. 285, 295 – 315.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S., Rich, N., Howard, R.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105.

    ADS  Google Scholar 

Download references

Acknowledgements

The IPS observations were carried out under the solar wind program of the Solar-Terrestrial Environment Laboratory (STEL) of Nagoya University. We acknowledge use of the SOHO/LASCO CME catalog; this CME catalog is generated and maintained at the CDAW Data Center by the National Aeronautics and Space Administration (NASA) and the Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between the European Space Agency and NASA. We thank the Space Physics Data Facility of NASA’s Goddard Space Flight Center for use of OMNIWeb service and OMNI data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Iju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iju, T., Tokumaru, M. & Fujiki, K. Kinematic Properties of Slow ICMEs and an Interpretation of a Modified Drag Equation for Fast and Moderate ICMEs. Sol Phys 289, 2157–2175 (2014). https://doi.org/10.1007/s11207-014-0472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-014-0472-3

Keywords

Navigation