Skip to main content
Log in

Restricted Common Component and Specific Weight Analysis: A Constrained Explorative Approach for the Customer Satisfaction Evaluation

  • Original Research
  • Published:
Social Indicators Research Aims and scope Submit manuscript

Abstract

Servqual is a service measurement multidimensional model (Parasuraman et al. in J Mark 49(4):41–50, 1985; Parasuraman et al. in J Retail 64:12–40, 1988) which involves a set of five dimensions representing service quality. It is based on a questionnaire to measure the gaps between customers’ expectations and perceptions of service. A re-examination and extension of this model, named Servperf, is instead based only on the perceptions (Taylor in J Mark 56(3):55–68, 1992; Taylor in J Mark 58:125–131, 1994). Common Components and Specific Weights Analysis (Qannari et al. in Food Qual Prefer 11:151–154, 2000) (CCSWA) is a useful tool to analyze customer satisfaction evaluation data. The rationale behind this method is the existence of a common structure to the data tables. Therefore, it determines a common space of representation for all data. Each table, which represents a ServPerf dimension, assesses a specific weight to each dimension of the common space. Customer satisfaction can be then investigated with respect to a common reference system where all the dimensions contribute to forming it. Sometimes we may have additional knowledge about some relationships among the service variables that can be incorporated in the analysis as external information. The aim of this paper is then to provide an extension of CCSWA based on an objective function which takes directly into account the external information (as linear constraints). This extension may lead to a simpler interpretation of the analysis results and to explore new relationships. A student satisfaction evaluation study highlights this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amenta, P. (2007). Multiple co-inertia analysis with linear constraints. Caribbean Journal of Mathematical and Computing Sciences, 14, 37–52.

    Google Scholar 

  • Amenta, P., D’Ambra, L. (2003). L’Analisi Multivariata dei Dati. Uno strumento per la valutazione dei servizi sanitari. In Proceedings of the Meeting of Italian Statistical Society Analisi Statistica Multivariata per le Scienze Economico-Sociali, le Scienze Naturali e la Tecnologia, Naples, Italy.

  • Carroll, J. D. (1968). A generalization of canonical correlation analysis to three or more sets of variables. In Proceedings of the 76th convection of American Psychological Association, pp. 227–228.

  • Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart–Young decomposition. Psychometrika, 35, 283–319.

    Article  Google Scholar 

  • Chessel, D., & Hanafi, M. (1996). Analyses de la co-inertie de $K$ nuages de points. Revue de Statistique Appliquée, 44, 35–60.

    Google Scholar 

  • Chessel, D., & Mercier, P. (1993). Couplage de triplets statistiques et liaisons espèces-environnement. In J. D. Lebreton & B. Asselain (Eds.), Biométrie et Environnement. Paris: Masson.

    Google Scholar 

  • Cronin, J. J., & Taylor, S. A. (1992). Measuring service quality: A re-examination and extension. Journal of Marketing, 56(3), 55–68.

    Article  Google Scholar 

  • Cronin, J. J., & Taylor, S. A. (1994). SERVPERF versus SERVQUAL: Reconciling performance-based and perceptions-minus-expectations measurementof service quality. Journal of Marketing, 58, 125–31.

    Article  Google Scholar 

  • D’Ambra, L., & Amenta, P. (2000). Multidimensional statistical methods based on co-inertia for the ‘multi-modules’ customer satisfaction evaluation, Proceedings of CIMASI’2000. Morocco: Casablanca.

    Google Scholar 

  • D’Ambra, L., Amenta, P., Lombardo, R., Gallo, M., & Sarnacchiaro, P. (2004). L’analisi statistica multivariata per la valutazione della patient e job satisfaction. In A. Pagano & G. Vittadini (Eds.), Qualità e valutazione delle strutture sanitarie. Milan: ETAS.

    Google Scholar 

  • D’Ambra, L., Amenta, P., Rubinacci, F., Gallo, M., Sarnacchiaro, P. (1999). Multidimensional statistical methods based on co-inertia for the customer satisfaction evaluation. In Proceedings of international quality conference IQC99, Bangkok, Thailand.

  • El Ghaziri, A., Cariou, V., Rutledge, D. N., & Qannari, E. M. (2016). Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets. Journal of Chemometrics, 30, 420–429.

    Article  Google Scholar 

  • Green, P. E., & Tull, D. S. (1988). Research for marketing decisions. New York: Prentice Hall.

    Google Scholar 

  • Hanafi, M., & Qannari, E. M. (2008). Nouvelles propriétés de l’analyse en composantes communes et poids spécifiques. Journal de la Société Française de Statistique, 49(2), 75–97.

    Google Scholar 

  • Horst, P. (1961). Relations among m sets of variables. Psychometrika, 26, 126–149.

    Article  Google Scholar 

  • Hotelling, H. (1936). Relations between two sets of variants. Biometrika, 28, 321–377.

    Article  Google Scholar 

  • Kendall, D. G. (1989). A survey of the statistical theory of shape. Statistical Science, 4(2), 87–99.

    Google Scholar 

  • Kiers, H. A. L. (1991). Hierarchical relations among three way methods. Psychometrika, 56, 449–470.

    Article  Google Scholar 

  • Lavit, C., Escoufier, Y., Sabatier, R., & Traissac, P. (1994). The act (statis method). Computational Statistics and Data Analysis, 18, 97–119.

    Article  Google Scholar 

  • Mazerolles, G., Hanafi, M., Dufour, E., Bertrand, D., & Qannari, E. M. (2006). Common components and specific weights analysis: A chemometric method for dealing with complexity of food products. Chemometrics and Intelligent Laboratory Systems, 81, 41–49.

    Article  Google Scholar 

  • Nishisato, S. (2005). On the scaling of ordinal measurement: A dual-scaling perspective. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary psychometrics (pp. 479–507). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Parasuraman, A., Zeithaml, V., & Berry, L. (1985). A conceptual model of service quality and its implication for future research. Journal of Marketing, 49(4), 41–50.

    Article  Google Scholar 

  • Parasuraman, A., Zeithaml, V., & Berry, L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64, 12–40.

    Google Scholar 

  • Petrick, J. F. (2002). Development of a multi-dimensional scale for measuring the perceived value of a service. Journal of Leisure Research, 34(2), 119–134.

    Article  Google Scholar 

  • Petrick, J. F. (2004a). First timers and repeaters perceived value. Journal of Travel Research, 43(1), 29–38.

    Article  Google Scholar 

  • Petrick, J. F. (2004b). The roles of quality, value, and satisfaction in predicting cruise passengers behavioral intentions. Journal of Travel Research, 42(4), 397–407.

    Article  Google Scholar 

  • Qannari, E. M., Courcoux, P., & Vigneau, E. (2001). Common components and specific weights analysis performed on preference data. Food Quality and Preference, 12, 365–368.

    Article  Google Scholar 

  • Qannari, E. M., Wakeling, I., Courcoux, P., & MacFie, H. J. H. (2000). Defining the underlying sensory dimensions. Food Quality and Preference, 11, 151–154.

    Article  Google Scholar 

  • Rao, C. R. (1980). Matrix approximations and reduction of dimensionality in multivariate statistical analysis. In P. R. Krishnaiah (Ed.), Multivariate analysis. Amsterdam: North Holland.

    Google Scholar 

  • Takane, Y., & Hwang, H. (2002). Generalized constrained canonical correlation analysis. Multivariate Behavioral Research, 37(2), 163–195.

    Article  Google Scholar 

  • Takane, Y., & Shibayama, T. (1991). Principal component analysis with external information on both subject and variables. Psychometrika, 56, 97–120.

    Article  Google Scholar 

  • Takane, Y., Yanai, H., & Hwang, H. (2006). An improved method for generalized constrained canonical correlation analysis. Computational Statistics & Data Analysis, 50, 221–241.

    Article  Google Scholar 

  • Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34, 273–286.

    Article  Google Scholar 

  • Torre, F., & Chessel, D. (1994). Co-structure de deux tableaux totalement appariés. Revue de Statistique Appliquée, 43, 109–121.

    Google Scholar 

  • Van de Geer, J. P. (1984). Linear relations among K sets of variables. Psychometrika, 49(1), 79–94.

    Article  Google Scholar 

  • Wold, S., Kettaneh, N., & Tjessem, K. (1996). Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection. Journal of Chemometrics, 10, 463–482.

    Article  Google Scholar 

  • Yanai, H. (1998). Generalized canonical correlation analysis with linear constraints. In C. Hayashi, K. Yajima, H. H. Bock, N. Ohsumi, Y. Tanaka, & Y. Baba (Eds.), Data science, classification, and related methods, studies in classification, data analysis, and knowledge organization. Tokyo: Springer.

    Google Scholar 

  • Yanai, H., Takeuchi, K., & Takane, Y. (2011). Projection matrices, generalized inverse matrices, and singular value decomposition. New York: Springer.

    Book  Google Scholar 

  • Zanella, A. (Ed.). (1999). Introduzione alla Misurazione della Customer Satisfaction. In Valutazione della qualità e Customer Satisfaction: il ruolo della statistica. Aspetti oggettivi e soggettivi della Qualità (pp. 217–231). Vita e Pensiero: Milano.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Amenta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A1. The normal equations of (4) for the first solutions are

$$\begin{aligned} \frac{1}{4}&\frac{\partial L}{\partial {\mathbf {q}}_1}= \sum _{k = 1}^K{({\mathbf {q}}_1^{T}{{\mathbf {X}}_k^{(1)}{\mathbf {u}}_k^{(1)})^3}} {\mathbf {X}}_k^{(1)}{\mathbf {u}}_k^{(1)}-\lambda _{1} {\mathbf {q}}_1=0 \\ \frac{1}{4}&\frac{\partial L}{\partial {\mathbf {u}}_k^{(1)}}=({\mathbf {q}}_1^{T}{{\mathbf {X}}_k^{(1)}{\mathbf {u}}_k^{(1)})^3}{{\mathbf {X}}_k^{(1)}}^T{\mathbf {q}}_1-\mu ^{(1)}_{k}{\mathbf {u}}_k^{(1)}-\frac{1}{2}{\mathbf{H}}_k {\varvec{\gamma }}_k=0\qquad (k=1,\ldots ,K) \end{aligned}$$
(14)
$$\begin{aligned} \frac{1}{2}&\frac{\partial L}{\partial \mu ^{(1)}_{k}}=1-{{\mathbf {u}}_k^{(1)}}^T{\mathbf {u}}_k^{(1)} =0 \\ \frac{1}{2}&\frac{\partial L}{\partial \lambda _{1}}=1-{\mathbf {q}}_1^{T}{\mathbf {q}}_1=0 \\ \frac{1}{2}&\frac{\partial L}{\partial {\varvec{\gamma }}_k}={\mathbf{H}}_k^T{\mathbf {u}}_k^{(1)}=0 \end{aligned}$$
(15)

Eigen-system (5) is obtained by left multiplying (14) with \({\mathbf {X}}_k^{(1)}{\mathbf {P}}^{\perp }_{\mathbf{H}_k}\) using (15) and (8) with the identities \(\mu ^{(1)}_{k}=\root 4 \of {{\mu ^{{(1)}}_{k}}^3}\root 4 \of {{\mu ^{{(1)}}_{k}}}\) and \(\root 4 \of {{\mu ^{{(1)}}_{k}}^3}=\root 4 \of {{\mu ^{{(1)}}_{k}}}\sqrt{{\mu ^{{(1)}}_{k}}}\), and by adding both terms of the identity up to \(K\) and finally considering formula (7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amenta, P., Lucadamo, A. & D’Ambra, A. Restricted Common Component and Specific Weight Analysis: A Constrained Explorative Approach for the Customer Satisfaction Evaluation. Soc Indic Res 156, 409–427 (2021). https://doi.org/10.1007/s11205-020-02294-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11205-020-02294-y

Keywords

Navigation