Skip to main content
Log in

Principal component analysis with external information on both subjects and variables

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A method for structural analysis of multivariate data is proposed that combines features of regression analysis and principal component analysis. In this method, the original data are first decomposed into several components according to external information. The components are then subjected to principal component analysis to explore structures within the components. It is shown that this requires the generalized singular value decomposition of a matrix with certain metric matrices. The numerical method based on the QR decomposition is described, which simplifies the computation considerably. The proposed method includes a number of interesting special cases, whose relations to existing methods are discussed. Examples are given to demonstrate practical uses of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bechtel, G. G. (1976).Multidimensional preference scaling. The Hague: Mouton.

    Google Scholar 

  • Bechtel, G. G., Tucker, L. R., & Chang, W. (1971). A scalar product model for the multidimensional scaling of choice.Psychometrika, 36, 369–387.

    Google Scholar 

  • Besse, P., & Ramsay, J. O. (1986). Principal components analysis of sampled functions.Psychometrika, 51, 285–311.

    Google Scholar 

  • Bloxom, B. (1978). Constrained multidimensional scaling inN spaces.Psychometrika, 43, 397–408.

    Google Scholar 

  • Böckenholt, U., & Böckenholt, I. (1990). Canonical analysis of contingency tables with linear constraints.Psychometrika, 55, 633–639.

    Google Scholar 

  • Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling, Vol. I (pp. 105–155). New York: Seminar Press.

    Google Scholar 

  • Carroll, J. D., Pruzansky, S., & Kruskal, J. B. (1980). CANDELINC: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters.Psychometrika, 45, 3–24.

    Google Scholar 

  • Corsten, L. C. A. (1976).Matrix approximation, a key to application of multivariate methods. Invited paper presented at the 9th Biometric Conference, Boston.

  • Corsten, L. C. A., & Van Eijnsbergen, A. C. (1972). Multiplicative effects in two-way analysis of variance.Statistica Neelandica, 26, 61–68.

    Google Scholar 

  • Critchley, F. (1985). Influence in principal component analysis.Biometrika, 72, 627–636.

    Google Scholar 

  • de Leeuw, J. (1984). Fixed rank matrix approximation with singular weights matrices.Computational Statistics Quarterly, 1, 3–12.

    Google Scholar 

  • DeSarbo, W. S., Carroll, J. D., Lehmann, D. R., & O'Shaughnessy, J. (1982). Three-way multivariate conjoint analysis.Marketing Science, 1, 323–350.

    Google Scholar 

  • DeSarbo, W. S., & Rao, V. R. (1984). GENFOLD2: A set of models and algorithms for the GENeral UnFOLDing analysis of preference/dominance data.Journal of Classification, 1, 147–186.

    Google Scholar 

  • De Soete, G., & Carroll, J. D. (1983). A maximum likelihood method for fitting the wandering vector model.Psychometrika, 48, 553–566.

    Google Scholar 

  • Eastment, H. T., & Krzanowski, W. J. (1982). Cross-validatory choice of the number of components from a principal component analysis.Technometrics, 24, 73–77.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the Jackknife.Annals of Statistics, 7, 1–26.

    Google Scholar 

  • Escoufier, Y., & Holmes, S. (1988).Décomposition de la variabilité dans les analyses exploratoires: Un exemple d'analyse en composantes principles en presence de variables qualitatives concomittantes [Descomposition of variabilities in exploratory data analysis: An example of principal component analysis in the presence of qualitative concomitant variables.] Unpublished manuscript, ENSAM-INRA, Montpellier, France.

    Google Scholar 

  • Fisher, R. A. (1948).Statistical methods for research workers (10th ed.). London: Oliver and Boyd.

    Google Scholar 

  • Gabriel, K. R. (1978). Least squares approximation of matrices by additive and multiplicative models.Journal of Royal Statistical Society, Series B, 40, 186–196.

    Google Scholar 

  • Gabriel, K. R., & Zamir, S. (1979). Lower rank approximation of matrices by least squares with any choice of weights.Technometrics, 21, 489–498.

    Google Scholar 

  • Gifi, A. (1981).Non-linear multivariate analysis. Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  • Gollob, H. F. (1968). A statistical model which combines features of factor analytic and analysis of variance technique.Psychometrika, 33, 73–115.

    Google Scholar 

  • Greenacre, M. J., & Underhill, L. G. (1982). Scaling a data matrix in a low-dimensional euclidean space. In D. M. Hawkins (Ed.),Topics in applied multivariate analysis (pp. 183–268). Cambridge: Cambridge University Press.

    Google Scholar 

  • Grizzle, J. E., & Allen, D. M. (1969). Analysis of growth and dose response curves.Biometrics, 25, 357–381.

    Google Scholar 

  • Hayashi, C. (1952). On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view.Annals of the Institute of Statistical Mathematics, 2, 69–98.

    Google Scholar 

  • Heiser, W. J., & de Leeuw, J. (1981). Multidimensional mapping of preference data.Mathematiqué et sciences humaines, 19, 39–96.

    Google Scholar 

  • Heiser, W. J., & Meulman, J. (1983a). Analyzing rectangular tables by joint and constrained multidimensional scaling.Journal of Econometrics, 22, 139–167.

    Google Scholar 

  • Heiser, W. J., & Meulman, J. (1983b). Constrained multidimensional scaling, including confirmation.Applied Psychological Measurement, 7, 381–404.

    Google Scholar 

  • Israëls, A. Z. (1984). Redundancy analysis for qualitative variables.Psychometrika, 49, 331–346.

    Google Scholar 

  • Jolliffe, I. T. (1986).Principal component analysis. Berlin: Springer Verlag.

    Google Scholar 

  • Khatri, C. G. (1966). A note on a MANOVA model applied to problems in growth curves.Annals of the Institute of Statistical Mathematics, 18, 75–86.

    Google Scholar 

  • Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method.Psychometrika, 29, 115–129.

    Google Scholar 

  • Meulman, J. (1982).Homogeneity analysis of incomplete data. Leiden: DSWO Press.

    Google Scholar 

  • Nishisato, S. (1978). Optimal scaling of paired comparison and rank order data: An alternative to Guttman's formulation.Psychometrika, 43, 263–271.

    Google Scholar 

  • Nishisato, S. (1980a).Analysis of categorical data: Dual scaling and its applications. Toronto: University of Toronto Press.

    Google Scholar 

  • Nishisato, S. (1980b). Dual scaling of successive categories data.Japanese Psychological Research, 22, 134–143.

    Google Scholar 

  • Nishisato, S. (1982).Quantification of qualitative data. Tokyo: Asakurashoten. (in Japanese)

    Google Scholar 

  • Nishisato, S. (1988). Dual scaling: Its development and comparisons with other quantification methods. In H. D. Pressmar, K. E. Jager, H. Krallmann, H. Schellhaas, & L. Streitferdt (Eds.),Deutsche Geselleschaft für operations research proceedings (pp. 376–389). Berlin: Springer.

    Google Scholar 

  • Nishisato, S., & Lawrence, D. R. (1981, May).Dual scaling of multidimensional tables, a comparative study. Paper presented at the annual meeting of the Psychometric Society, Chapel Hill, NC.

  • Nishisato, S., & Lawrence, D. R. (1989). Dual scaling of multiway data matrices: Several variants. In R. Coppi & S. Bolasco (Eds.)Multiway data analysis (pp. 317–326). Amsterdam: North Holland.

    Google Scholar 

  • Nishisato, S., & Sheu, W. (1984). A note on dual scaling of successive categories data.Psychometrika, 49, 493–500.

    Google Scholar 

  • Okamoto, M. (1972). Four techniques of principal component analysis.Journal of Japanese Statistical Society, 2, 63–69.

    Google Scholar 

  • Potthoff, R. F., & Roy, S. N. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems.Biometrika, 51, 313–326.

    Google Scholar 

  • Ramsay, J. O. (1978). Confidence regions for multidimensional scaling analysis.Psychometrika, 43, 145–160.

    Google Scholar 

  • Ramsay, J. O. (1980). Joint analysis of direct ratings, pairwise preferences and dissimilarities.Psychometrika, 45, 149–165.

    Google Scholar 

  • Ramsay, J. O. (1989). Monotone regression splines in actions.Statistical Science, 4, 425–441.

    Google Scholar 

  • Ramsay, J. O., ten Berge, J., & Styan, G. P. H. (1984). Matrix correlation.Psychometrika, 49, 403–423.

    Google Scholar 

  • Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research.Sankhya A, 26, 329–358.

    Google Scholar 

  • Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves.Biometrika, 52, 447–458.

    Google Scholar 

  • Rao, C. R. (1979). Separation theorems for singular values of matrices and their applications in multivariate analysis.Journal of Multivariate Analysis, 9, 362–377.

    Google Scholar 

  • Rao, C. R. (1980). Matrix approximations and reduction of dimensionality in multivariate statistical analysis. In P. R. Krishnaiah (Ed.),Multivariate analysis (pp. 3–22). Amsterdam: North Holland.

    Google Scholar 

  • Rumelhart, D. L., & Greeno, J. G. (1971). Similarity between stimuli: An experimental test of the Luce and Restle choice models.Journal of Mathematical Psychology, 8, 370–381.

    Google Scholar 

  • Sabatier, R., Lebreton, J. D., & Chessel, D. (1989). Multivariate analysis of composition data accompanied by qualitative variables describing a structure. In R. Coppi & S. Bolasco (Eds.),Multiway data analysis (pp. 341–352). Amsterdam: North-Holland.

    Google Scholar 

  • Shibayama, T. (1988).Multivariate analysis of test scores with missing values. Unpublished Doctoral Dissertation, University of Tokyo. (in Japanese)

  • Siotani, M., Hayakawa, T., & Fujikoshi, Y. (1985).Modern multivariate statistical analysis: A graduate course handbook. Columbus, OH: American Sciences Press.

    Google Scholar 

  • Slater, P. (1960). The analysis of personal preferences.The British Journal of Statistical Psychology, 13, 119–135.

    Google Scholar 

  • Sjöberg, L. (1967). Successive categories scaling of paired comparisons.Psychometrika, 32, 297–308.

    Google Scholar 

  • Takane, Y. (1980). Maximum likelihood estimation in the generalized case of Thurstone's model of comparative judgment.Japanese Psychological Research, 22, 188–196.

    Google Scholar 

  • Takane, Y. (1987). Analysis of covariance structures and binary choice data.Communication and Cognition, 20, 45–62.

    Google Scholar 

  • Takane, Y., & Shibayama, T. (1988a). Three vector models of pairwise preference ratings and their generalizations. In S. Kashiwagi (Ed.),Proceedings of the 16th Annual Meeting of the Behaviormetric Society (pp. 131–132). Tokyo: Behaviormetric Society of Japan.

    Google Scholar 

  • Takane, Y., & Shibayama, T. (1988b). Dual scaling with external criteria reconsidered. In S. Kashiwagi (Ed.),Proceedings of the 16th Annual Meeting of the Behaviormetric Society (pp. 133–134). Tokyo: Behaviormetric Society of Japan.

    Google Scholar 

  • Takane, Y., Yanai, H., & Mayekawa, S. (in press).Relationships among several methods of linearly constrained correspondence analysis. Psychometrika.

  • Tanaka, Y. (1988). Sensitivity analysis in principal component analysis: Influence on the subspace spanned by principal components.Communications in Statistics—Theory and Methods, 17, 3157–3175.

    Google Scholar 

  • ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis.Ecology, 67, 1167–1179.

    Google Scholar 

  • Tucker, L. R. (1959). Intra-individual and inter-individual multidimensionality. In H. Gulliksen & S. Messick (Eds.),Psychological scaling (pp. 155–167). New York: Wiley.

    Google Scholar 

  • van den Wollenberg, A. L. (1977). Redundancy analysis: An alternative for canonical correlation analysis.Psychometrika, 42, 207–219.

    Google Scholar 

  • van der Heijden, P. G. M., de Falguerolles, A., & de Leeuw, J. (1989). A combined approach to contingency table analysis using correspondence analysis and log linear analysis.Applied Statistics, 38, 249–292.

    Google Scholar 

  • Weinberg, S. L., Carroll, J. D., & Cohen, H. S. (1984). Confidence regions for INDSCAL using the jackknife and bootstrap techniques.Psychometrika, 49, 475–491.

    Google Scholar 

  • Wilkinson, J. H. (1965).The algebraic eigenvalue problem. Oxford: Oxford University Press.

    Google Scholar 

  • Winsberg, S. (1988). Two techniques: Monotone spline transformations for dimension reduction in PCA and easy-to-generate metrics for PCA of sampled functions. In J. L. A. van Rijckevorsel & J. de Leeuw (Eds.),Component and correspondence analysis (pp. 115–135). New York: Wiley.

    Google Scholar 

  • Winsberg, S., & Ramsay, J. O. (1983). Monotone spline transformations for dimension reduction.Psychometrika, 48, 575–595.

    Google Scholar 

  • Yanai, H. (1970). Factor analysis with external criteria.Japanese Psychological Research, 12, 143–153.

    Google Scholar 

  • Yanai, H. (1974). Unification of various techniques of multivariate analysis by means of generalized coefficients of determination. (G.C.D.)Journal of Behaviormetrics, 1, 45–54. (in Japanese)

    Google Scholar 

  • Yanai, H. (1990). Some generalized forms of least squares g-inverse, minimum norm g-inverse and Moore-Penrose inverse matrices.Computational Statistics and Data Analysis, 10, 251–260.

    Google Scholar 

  • Yanai, H., & Takeuchi, K. (1983).Projection matrices, generalized inverse and singular value decomposition. Tokyo: University of Tokyo Press. (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work reported in this paper was supported by grant A6394 from the Natural Sciences and Engineering Research Council of Canada to the first author. Thanks are due to Jim Ramsay, Haruo Yanai, Henk Kiers, and Shizuhiko Nishisato for their insightful comments on earlier versions of this paper. Jim Ramsay, in particular, suggested the use of the QR decomposition, which simplified the presentation of the paper considerably.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takane, Y., Shibayama, T. Principal component analysis with external information on both subjects and variables. Psychometrika 56, 97–120 (1991). https://doi.org/10.1007/BF02294589

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294589

Key words

Navigation