Skip to main content
Log in

Weak convergence of the conditional U-statistics for locally stationary functional time series

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

In recent years, the direction has turned to non-stationary time series. Here the situation is more complicated: it is often unclear how to set down a meaningful asymptotic for non-stationary processes. For this reason, the theory of locally stationary processes arose, and it is based on infill asymptotics created from non-parametric statistics. The present paper aims to develop a framework for inference of locally stationary functional time series based on the so-called conditional U-statistics introduced by Stute (Ann Probab 19:812–825, 1991), and may be viewed as a generalization of the Nadaraya-Watson regression function estimates. In this paper, we introduce an estimator of the conditional U-statistics operator that takes into account the nonstationary behavior of the data-generating process. We are mainly interested in establishing weak convergence of conditional U-processes in the locally stationary functional mixing data framework. More precisely, we investigate the weak convergence of conditional U-processes when the explicative variable is functional. We treat the weak convergence when the class of functions is bounded or unbounded, satisfying some moment conditions. These results are established under fairly general structural conditions on the classes of functions and the underlying models. The theoretical results established in this paper are (or will be) critical tools for further functional data analysis developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A semi-metric (sometimes called pseudo-metric) \(d(\cdot , \cdot )\) is a metric which allows \(d(x_{1} x_{2}) = 0\) for some \(x_{1}\ne x_{2}\).

References

  • Abrevaya J, Jiang W (2005) A nonparametric approach to measuring and testing curvature. J Bus Econ. Stat. 23(1):1–19

    Article  MathSciNet  Google Scholar 

  • Akaike H (1954) An approximation to the density function. Ann Inst Stat Math Tokyo 6:127–132

    Article  MathSciNet  Google Scholar 

  • Almanjahie IM, Bouzebda S, Chikr Elmezouar Z, Laksaci A (2022) The functional \(k{\rm NN}\) estimator of the conditional expectile: uniform consistency in number of neighbors. Stat Risk Model 38(3–4):47–63

    MathSciNet  Google Scholar 

  • Almanjahie IM, Bouzebda S, Kaid Z, Laksaci A (2022) Nonparametric estimation of expectile regression in functional dependent data. J Nonparametr Stat 34(1):250–281

    Article  MathSciNet  Google Scholar 

  • Andersen NT (1985) The central limit theorem for non-separable valued functions. Z Wahrscheinlichkeitstheor Verw Geb 70:445–455

    Article  Google Scholar 

  • Aneiros G, Cao R, Fraiman R, Genest C, Vieu P (2019) Recent advances in functional data analysis and high-dimensional statistics. J Multivar Anal 170:3–9

    Article  MathSciNet  Google Scholar 

  • Antoniadis A, Sapatinas T (2003) Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes. J Multivar Anal 87(1):133–158

    Article  MathSciNet  Google Scholar 

  • Araujo A, Giné E (1980) The central limit theorem for real and Banach valued random variables. Wiley series in probability and mathematical statistics. Wiley, New York-Chichester-Brisbane

    Google Scholar 

  • Arcones MA (1998) The law of large numbers for \(U\)-statistics under absolute regularity. Electron Commun Probab 3:13–19

    Article  MathSciNet  Google Scholar 

  • Arcones MA, Giné E (1993) Limit theorems for \(U\)-processes. Ann Probab 21(3):1494–1542

    Article  MathSciNet  Google Scholar 

  • Arcones MA, Giné E (1995) On the law of the iterated logarithm for canonical \(U\)-statistics and processes. Stoch Process Appl 58(2):217–245

    Article  MathSciNet  Google Scholar 

  • Arcones MA, Yu B (1994) Central limit theorems for empirical and \(U\)-processes of stationary mixing sequences. J Theor Probab 7(1):47–71

    Article  MathSciNet  Google Scholar 

  • Arcones MA, Chen Z, Giné E (1994) Estimators related to \(U\)-processes with applications to multivariate medians: asymptotic normality. Ann Stat 22(3):1460–1477

    Article  MathSciNet  Google Scholar 

  • Basu AK, Kundu A (2002) Limit distribution for conditional \(U\)-statistics for dependent processes. Calcutta Stat Assoc Bull 52(205–208):381–407

    Article  MathSciNet  Google Scholar 

  • Bellet A, Habrard A (2015) Robustness and generalization for metric learning. Neurocomputing 151:259–267

    Article  Google Scholar 

  • Bellet A, Habrard A, Sebban M (2013) A survey on metric learning for feature vectors and structured data. CoRR, arXiv:1306.6709

  • Benhenni K, Ferraty F, Rachdi M, Vieu P (2007) Local smoothing regression with functional data. Comput Stat 22(3):353–369

    Article  MathSciNet  Google Scholar 

  • Bernstein S (1927) Sur l’extension du théoréme limite du calcul des probabilités aux sommes de quantités dépendantes. Math Ann 97(1):1–59

    Article  MathSciNet  Google Scholar 

  • Besse P, Ramsay JO (1986) Principal components analysis of sampled functions. Psychometrika 51(2):285–311

    Article  MathSciNet  Google Scholar 

  • Bogachev VI (1998) Gaussian measures, vol 62 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI

  • Bongiorno EG, Goia A (2016) Classification methods for Hilbert data based on surrogate density. Comput Stat Data Anal 99:204–222

    Article  MathSciNet  Google Scholar 

  • Bongiorno EG, Goia A (2017) Some insights about the small ball probability factorization for Hilbert random elements. Stat Sin 27(4):1949–1965

    MathSciNet  Google Scholar 

  • Bongiorno EG, Goia A, Vieu P (2018) Evaluating the complexity of some families of functional data. SORT 42(1):27–44

    MathSciNet  Google Scholar 

  • Borovkova S, Burton R, Dehling H (2001) Limit theorems for functionals of mixing processes with applications to \(U\)-statistics and dimension estimation. Trans Am Math Soc 353(11):4261–4318

    Article  MathSciNet  Google Scholar 

  • Borovskikh YV (1996) \(U\)-statistics in Banach spaces. VSP, Utrecht

    Google Scholar 

  • Bosq D (2000) Linear processes in function spaces, volume 149 of lecture notes in statistics. Springer-Verlag, New York. Theory and applications

  • Bouzebda S (2011) Some new multivariate tests of independence. Math Methods Stat 20(3):192–205

    Article  MathSciNet  Google Scholar 

  • Bouzebda S (2012) On the strong approximation of bootstrapped empirical copula processes with applications. Math Methods Stat 21(3):153–188

    Article  MathSciNet  Google Scholar 

  • Bouzebda S (2016) Some applications of the strong approximation of the integrated empirical copula processes. Math Methods Stat 25(4):281–303

    Article  MathSciNet  Google Scholar 

  • Bouzebda S (2023) General tests of conditional independence based on empirical processes indexed by functions. Jpn J Stat Data Sci 6(1):115–177

    Article  MathSciNet  Google Scholar 

  • Bouzebda S (2023) On the weak convergence and the uniform-in-bandwidth consistency of the general conditional \(U\)-processes based on the copula representation: multivariate setting. Hacet J Math Stat 52(3):1–46

    MathSciNet  Google Scholar 

  • Bouzebda S, Chaouch M (2022) Uniform limit theorems for a class of conditional \(Z\)-estimators when covariates are functions. J Multivar Anal 189:104872

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Nemouchi B (2019) Central limit theorems for conditional empirical and conditional \(U\)-processes of stationary mixing sequences. Math Methods Stat 28(3):169–207

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Nemouchi B (2020) Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional \(U\)-statistics involving functional data. J Nonparametr Stat 32(2):452–509

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Nemouchi B (2023) Weak-convergence of empirical conditional processes and conditional \(U\)-processes involving functional mixing data. Stat Inference Stoch Process 26(1):33–88

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Nezzal A (2022) Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional U-statistics involving functional data. Jpn J Stat Data Sci 5(2):431–533

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Nezzal A (2023) Asymptotic properties of conditional \(U\)-statistics using delta sequences. Commun Stat Theory Methods 1–56. https://doi.org/10.1080/03610926.2023.2179887

  • Bouzebda S, Soukarieh I (2022) Renewal type bootstrap for \(U\)-process Markov chains. Markov Process Relat Fields 28(5):673–735

    MathSciNet  Google Scholar 

  • Bouzebda S, Soukarieh I (2023) Non-parametric conditional u-processes for locally stationary functional random fields under stochastic sampling design. Mathematics 11(1):16

    Article  Google Scholar 

  • Bouzebda S, Taachouche N (2023) On the variable bandwidth kernel estimation of conditional \(U\)-statistics at optimal rates in sup-norm. Phys A 625:129000

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Taachouche N (2023) Rates of the strong uniform consistency for the kernel-type regression function estimators with general kernels on manifolds. Math Methods Stat 32(1):27–80

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Zari T (2013) Asymptotic behavior of weighted multivariate Cramér-von Mises-type statistics under contiguous alternatives. Math Methods Stat 22(3):226–252

    Article  Google Scholar 

  • Bouzebda S, Elhattab I, Nemouchi B (2021) On the uniform-in-bandwidth consistency of the general conditional \(U\)-statistics based on the copula representation. J Nonparametr Stat 33(2):321–358

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Laksaci A, Mohammedi M (2023) The \(k\)-nearest neighbors method in single index regression model for functional quasi-associated time series data. Rev Mat Complut 36(2):361–391

    Article  MathSciNet  Google Scholar 

  • Bouzebda S, Nezzal A, Zari T (2023) Uniform consistency for functional conditional U-statistics using delta-sequences. Mathematics 11(1):1–39

    Google Scholar 

  • Bouzebda S, El-hadjali T, Ferfache AA (2023) Uniform in bandwidth consistency of conditional \(U\)-statistics adaptive to intrinsic dimension in presence of censored data. Sankhya A 85(2):1548–1606

    Article  MathSciNet  Google Scholar 

  • Cao Q, Guo Z-C, Ying Y (2016) Generalization bounds for metric and similarity learning. Mach Learn 102(1):115–132

    Article  MathSciNet  Google Scholar 

  • Clarkson JA, Adams CR (1933) On definitions of bounded variation for functions of two variables. Trans Am Math Soc 35(4):824–854

    Article  MathSciNet  Google Scholar 

  • Clémençon S (2014) A statistical view of clustering performance through the theory of \(U\)-processes. J Multivar Anal 124:42–56

    Article  MathSciNet  Google Scholar 

  • Clémençon S, Lugosi G, Vayatis N (2008) Ranking and empirical minimization of \(U\)-statistics. Ann Stat 36(2):844–874

    Article  MathSciNet  Google Scholar 

  • Clémençon S, Colin I, Bellet A (2016) Scaling-up empirical risk minimization: optimization of incomplete \(U\)-statistics. J Mach Learn Res 17:76

    MathSciNet  Google Scholar 

  • Cybis GB, Valk M, Lopes SRC (2018) Clustering and classification problems in genetics through \(U\)-statistics. J Stat Comput Simul 88(10):1882–1902

    Article  MathSciNet  Google Scholar 

  • Dahlhaus R (1996) On the Kullback–Leibler information divergence of locally stationary processes. Stoch Process Appl 62(1):139–168

    Article  MathSciNet  Google Scholar 

  • Dahlhaus R (1997) Fitting time series models to nonstationary processes. Ann Stat 25(1):1–37

    Article  MathSciNet  Google Scholar 

  • Dahlhaus R, Polonik W (2006) Nonparametric quasi-maximum likelihood estimation for Gaussian locally stationary processes. Ann Stat 34(6):2790–2824

    Article  MathSciNet  Google Scholar 

  • Dahlhaus R, Polonik W (2009) Empirical spectral processes for locally stationary time series. Bernoulli 15(1):1–39

    Article  MathSciNet  Google Scholar 

  • Davydov JA (1973) Mixing conditions for Markov chains. Teor Verojatnost Primenen 18:321–338

    MathSciNet  Google Scholar 

  • de la Peña VH (1992) Decoupling and Khintchine’s inequalities for \(U\)-statistics. Ann Probab 20(4):1877–1892

    MathSciNet  Google Scholar 

  • de la Peña VH, Giné E (1999) Decoupling. Probability and its applications (New York). Springer-Verlag, New York. From dependence to independence, Randomly stopped processes. \(U\)-statistics and processes. Martingales and beyond

  • Deheuvels P (2011) One bootstrap suffices to generate sharp uniform bounds in functional estimation. Kybernetika (Prague) 47(6):855–865

    MathSciNet  Google Scholar 

  • Denker M, Keller G (1983) On \(U\)-statistics and v. Mises’ statistics for weakly dependent processes. Z. Wahrsch. Verw. Gebiete 64(4):505–522

    Article  MathSciNet  Google Scholar 

  • Devroye L, Lugosi G (2001) Combinatorial methods in density estimation. Springer series in statistics. Springer-Verlag, New York

    Book  Google Scholar 

  • Didi S, Bouzebda S (2022) Wavelet density and regression estimators for continuous time functional stationary and ergodic processes. Mathematics 10(22):4356

    Article  Google Scholar 

  • Didi S, Al Harby A, Bouzebda S (2022) Wavelet density and regression estimators for functional stationary and ergodic data: discrete time. Mathematics 10(19):3433

    Article  Google Scholar 

  • Dudley RM (1967) The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J Funct Anal 1:290–330

    Article  MathSciNet  Google Scholar 

  • Dudley RM (1985) An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions. In: Probability in Banach spaces, V (Medford, Mass., 1984), volume 1153 of Lecture notes in mathematics, pp 141–178. Springer, Berlin

  • Dudley RM (1999) Uniform central limit theorems, vol 63. Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dudley RM (2014) Uniform central limit theorems, vol 142. Cambridge studies in advanced mathematics. Cambridge University Press, New York

    Book  Google Scholar 

  • Eberlein E (1984) Weak convergence of partial sums of absolutely regular sequences. Stat Probab Lett 2(5):291–293

    Article  MathSciNet  Google Scholar 

  • Eggermont PPB, LaRiccia VN (2001) Maximum penalized likelihood estimation. Springer series in statistics, vol 1. Springer-Verlag, New York. Density estimation

  • Einmahl U, Mason DM (2005) Uniform in bandwidth consistency of kernel-type function estimators. Ann Stat 33(3):1380–1403

    Article  MathSciNet  Google Scholar 

  • Faivishevsky L, Goldberger J (2009) ICA based on a smooth estimation of the differential entropy. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems, vol 21. Curran Associates Inc, New York

    Google Scholar 

  • Ferraty F, Vieu P (2004) Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination. J Nonparametr Stat 16(1–2):111–125 (The International Conference on Recent Trends and Directions in Nonparametric Statistics)

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006a) Nonparametric functional data analysis. Springer series in statistics. Springer, New York. Theory and practice

  • Ferraty F, Vieu P (2006b) Nonparametric functional data analysis. Springer series in statistics. Springer, New York. Theory and practice

  • Ferraty F, Laksaci A, Vieu P (2006) Estimating some characteristics of the conditional distribution in nonparametric functional models. Stat Inference Stoch Process 9(1):47–76

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Mas A, Vieu P (2007) Nonparametric regression on functional data: inference and practical aspects. Aust N Z J Stat 49:267–286

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Laksaci A, Tadj A, Vieu P (2010) Rate of uniform consistency for nonparametric estimates with functional variables. J Stat Plan Inference 140(2):335–352

    Article  MathSciNet  Google Scholar 

  • Ferraty F, Kudraszow N, Vieu P (2012) Nonparametric estimation of a surrogate density function in infinite-dimensional spaces. J Nonparametr Stat 24(2):447–464

    Article  MathSciNet  Google Scholar 

  • Frees EW (1989) Infinite order \(U\)-statistics. Scand J Stat 16(1):29–45

    MathSciNet  Google Scholar 

  • Fu K-A (2012) An application of \(U\)-statistics to nonparametric functional data analysis. Commun Stat Theory Methods 41(9):1532–1542

    Article  MathSciNet  Google Scholar 

  • Gasser T, Hall P, Presnell B (1998) Nonparametric estimation of the mode of a distribution of random curves. J R Stat Soc Ser B Stat Methodol 60(4):681–691

    Article  MathSciNet  Google Scholar 

  • Ghosal S, Sen A, van der Vaart AW (2000) Testing monotonicity of regression. Ann Stat 28(4):1054–1082

    Article  MathSciNet  Google Scholar 

  • Giné E, Nickl R (2016) Mathematical foundations of infinite-dimensional statistical models, vol 40. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, New York

    Google Scholar 

  • Giné E, Zinn J (1984) Some limit theorems for empirical processes. Ann Probab 12(4):929–998 (With discussion)

    Article  MathSciNet  Google Scholar 

  • Hall P (1984) Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function. Z Wahrsch Verw Gebiete 67(2):175–196

    Article  MathSciNet  Google Scholar 

  • Hall P, Heyde CC (1980) Martingale limit theory and its application. probability and mathematical statistics. Academic Press Inc., Harcourt Brace Jovanovich, New York, London

    Google Scholar 

  • Halmos PR (1946) The theory of unbiased estimation. Ann Math Stat 17:34–43

    Article  MathSciNet  Google Scholar 

  • Han F, Qian T (2018) On inference validity of weighted U-statistics under data heterogeneity. Electron J Stat 12(2):2637–2708

    Article  MathSciNet  Google Scholar 

  • Härdle W (1990) Applied nonparametric regression, vol 19. Econometric society monographs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Härdle W, Marron JS (1985) Optimal bandwidth selection in nonparametric regression function estimation. Ann Stat 13(4):1465–1481

    Article  MathSciNet  Google Scholar 

  • Hardy GH (1905) On double Fourier series and especially those which represent the double zeta-function with real and incommensurable parameters. Q J Math 37(1):53–79

    MathSciNet  Google Scholar 

  • Harel M, Puri ML (1996) Conditional \(U\)-statistics for dependent random variables. J Multivar Anal 57(1):84–100

    Article  MathSciNet  Google Scholar 

  • Heilig C, Nolan D (2001) Limit theorems for the infinite-degree \(U\)-process. Stat Sin 11(1):289–302

    MathSciNet  Google Scholar 

  • Hobson EW (1958) The theory of functions of a real variable and the theory of Fourier’s series, vol II. Dover Publications Inc., New York

    Google Scholar 

  • Hoeffding W (1948) A class of statistics with asymptotically normal distribution. Ann Math Stat 19:293–325

    Article  MathSciNet  Google Scholar 

  • Hoffmann-Jørgensen J (1991) Stochastic processes on Polish spaces, vol 39. Various publications series (Aarhus). Aarhus Universitet, Matematisk Institut, Aarhus

    Google Scholar 

  • Hörmann S, Kokoszka P (2010) Weakly dependent functional data. Ann Stat 38(3):1845–1884

    Article  MathSciNet  Google Scholar 

  • Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer series in statistics. Springer, New York

    Book  Google Scholar 

  • Ibragimov IA, Solev VN (1969) A certain condition for the regularity of Gaussian stationary sequence. Zap Naučn Sem Leningrad Otdel Mat Inst Steklov (LOMI) 12:113–125

    MathSciNet  Google Scholar 

  • Jadhav S, Ma S (2021) An association test for functional data based on Kendall’s tau. J Multivar Anal 184:104740

    Article  MathSciNet  Google Scholar 

  • Jentsch C, Subba Rao S (2015) A test for second order stationarity of a multivariate time series. J Econom 185(1):124–161

    Article  MathSciNet  Google Scholar 

  • Jin R, Wang S, Zhou Y (2009) Regularized distance metric learning: theory and algorithm. In: Bengio Y, Schuurmans D, Lafferty J, Williams C, Culotta A (eds) Advances in neural information processing systems, vol 22. Curran Associates Inc., New York

    Google Scholar 

  • Kara-Zaitri L, Laksaci A, Rachdi M, Vieu P (2017) Uniform in bandwidth consistency for various kernel estimators involving functional data. J Nonparametr Stat 29(1):85–107

    Article  MathSciNet  Google Scholar 

  • Kolmogorov AN, Tihomirov VM (1959) \(\varepsilon \)-entropy and \(\varepsilon \)-capacity of sets in function spaces. Uspehi Mat Nauk 14(2 (86)):3–86

    MathSciNet  Google Scholar 

  • Koroljuk VS, Borovskich YV (1994) Theory of \(U\)-statistics, vol 273 Mathematics and its applications. Kluwer Academic Publishers Group, Dordrecht. Translated from the 1989 Russian original by Malyshev PV, Malyshev DV, and revised by the authors

  • Kosorok MR (2008) Introduction to empirical processes and semiparametric inference. Springer series in statistics. Springer, New York

    Book  Google Scholar 

  • Krause M (1903) Über Mittelwertsätze im Gebiete der Doppelsummen und Doppelintegrale. Leipz Ber. 55:239–263

    Google Scholar 

  • Kreiss J-P, Paparoditis E (2015) Bootstrapping locally stationary processes. J R Stat Soc Ser B Stat Methodol 77(1):267–290

    Article  MathSciNet  Google Scholar 

  • Kurisu D (2022) Nonparametric regression for locally stationary functional time series. Electron J Stat 16(2):3973–3995

    Article  MathSciNet  Google Scholar 

  • Lee AJ (1990) \(U\)-statistics, vol 110 Statistics: textbooks and monographs. Marcel Dekker, Inc., New York. Theory and practice

  • Lee S, Linton O, Whang Y-J (2009) Testing for stochastic monotonicity. Econometrica 77(2):585–602

    Article  MathSciNet  Google Scholar 

  • Leucht A (2012) Degenerate \(U\)- and \(V\)-statistics under weak dependence: asymptotic theory and bootstrap consistency. Bernoulli 18(2):552–585

    Article  MathSciNet  Google Scholar 

  • Leucht A, Neumann MH (2013) Degenerate \(U\)- and \(V\)-statistics under ergodicity: asymptotics, bootstrap and applications in statistics. Ann Inst Stat Math 65(2):349–386

    Article  MathSciNet  Google Scholar 

  • Li WV, Shao Q-M (2001) Gaussian processes: inequalities, small ball probabilities and applications. Stochastic processes: theory and methods, vol 19. Handbook of statistics. North-Holland, Amsterdam, pp 533–597

    Chapter  Google Scholar 

  • Liebscher E (1996) Strong convergence of sums of \(\alpha \)-mixing random variables with applications to density estimation. Stoch Process Appl 65(1):69–80

    Article  MathSciNet  Google Scholar 

  • Lim F, Stojanovic VM (2013) On u-statistics and compressed sensing i: non-asymptotic average-case analysis. IEEE Trans Signal Process 61(10):2473–2485

    Article  MathSciNet  Google Scholar 

  • Ling N, Vieu P (2018) Nonparametric modelling for functional data: selected survey and tracks for future. Statistics 52(4):934–949

    Article  MathSciNet  Google Scholar 

  • Liu Q, Lee J, Jordan M (2016) A kernelized stein discrepancy for goodness-of-fit tests. In: International conference on machine learning. PMLR, pp 276–284

  • Masak T, Sarkar S, Panaretos VM (2020) Principal separable component analysis via the partial inner product. Statistics Theory

  • Mason DM (2012) Proving consistency of non-standard kernel estimators. Stat Inference Stoch Process 15(2):151–176

    Article  MathSciNet  Google Scholar 

  • Masry E (2005) Nonparametric regression estimation for dependent functional data: asymptotic normality. Stoch Process Appl 115(1):155–177

    Article  MathSciNet  Google Scholar 

  • Mayer U, Zähle H, Zhou Z (2020) Functional weak limit theorem for a local empirical process of non-stationary time series and its application. Bernoulli 26(3):1891–1911

    Article  MathSciNet  Google Scholar 

  • Mayer-Wolf E, Zeitouni O (1993) The probability of small Gaussian ellipsoids and associated conditional moments. Ann Probab 21(1):14–24

    Article  MathSciNet  Google Scholar 

  • Mohammedi M, Bouzebda S, Laksaci A (2021) The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data. J Multivar Anal 181:104673

    Article  MathSciNet  Google Scholar 

  • Mohammedi M, Bouzebda S, Laksaci A, Bouanani O (2023) Asymptotic normality of the k-NN single index regression estimator for functional weak dependence data. Commun Stat Theory Methods 0(0):1–26. https://doi.org/10.1080/03610926.2022.2150823

    Article  Google Scholar 

  • Nadaraja EA (1964) On a regression estimate. Teor Verojatnost i Primenen 9:157–159

    MathSciNet  Google Scholar 

  • Nadaraya EA (1989) Nonparametric estimation of probability densities and regression curves, vol 20 of Mathematics and its applications (soviet series). Kluwer Academic Publishers Group, Dordrecht. Translated from the Russian by Samuel Kotz

  • Nason GP, von Sachs R, Kroisandt G (2000) Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. J R Stat Soc Ser B Stat Methodol 62(2):271–292

    Article  MathSciNet  Google Scholar 

  • Neumann MH, von Sachs R (1997) Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. Ann Stat 25(1):38–76

    Article  MathSciNet  Google Scholar 

  • Niederreiter H (1992) Random number generation and quasi-Monte Carlo methods. In: CBMS-NSF regional conference series in applied mathematics, vol 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

  • Nolan D, Pollard D (1987) \(U\)-processes: rates of convergence. Ann Stat 15(2):780–799

    Article  MathSciNet  Google Scholar 

  • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076

    Article  MathSciNet  Google Scholar 

  • Peng W, Coleman T, Mentch L (2022) Rates of convergence for random forests via generalized U-statistics. Electron J Stat 16(1):232–292

    Article  MathSciNet  Google Scholar 

  • Phandoidaen N, Richter S (2022) Empirical process theory for locally stationary processes. Bernoulli 28(1):453–480

    Article  MathSciNet  Google Scholar 

  • Pollard D (1984) Convergence of stochastic processes. Springer series in statistics. Springer-Verlag, New York

    Book  Google Scholar 

  • Prakasa Rao BLS, Sen A (1995) Limit distributions of conditional \(U\)-statistics. J Theor Probab 8(2):261–301

    Article  MathSciNet  Google Scholar 

  • Priestley MB (1965) Evolutionary spectra and non-stationary processes. (with discussion). J R Stat Soc Ser B 27:204–237

    MathSciNet  Google Scholar 

  • Rachdi M, Vieu P (2007) Nonparametric regression for functional data: automatic smoothing parameter selection. J Stat Plan Inference 137(9):2784–2801

    Article  MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2002) Applied functional data analysis. Springer series in statistics. Springer-Verlag, New York. Methods and case studies

  • Rempala G, Gupta A (1999) Weak limits of \(U\)-statistics of infinite order. Random Oper Stoch Equ 7(1):39–52

    Article  MathSciNet  Google Scholar 

  • Rosenblatt M (1956) A central limit theorem and a strong mixing condition. Proc Nat Acad Sci U S A 42:43–47

    Article  MathSciNet  Google Scholar 

  • Sakiyama K, Taniguchi M (2004) Discriminant analysis for locally stationary processes. J Multivar Anal 90(2):282–300

    Article  MathSciNet  Google Scholar 

  • Sen A (1994) Uniform strong consistency rates for conditional \(U\)-statistics. Sankhyā Ser A 56(2):179–194

    MathSciNet  Google Scholar 

  • Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley series in probability and mathematical statistics. Wiley, New York

    Book  Google Scholar 

  • Shang HL (2014) Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density. J Nonparametr Stat 26(3):599–615

    Article  MathSciNet  Google Scholar 

  • Sherman RP (1993) The limiting distribution of the maximum rank correlation estimator. Econometrica 61(1):123–137

    Article  MathSciNet  Google Scholar 

  • Sherman RP (1994) Maximal inequalities for degenerate \(U\)-processes with applications to optimization estimators. Ann Stat 22(1):439–459

    Article  MathSciNet  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Monographs on statistics and applied probability. Chapman & Hall, London

    Google Scholar 

  • Silverman RA (1957) Locally stationary random processes. New York University, Institute of Mathematical Sciences, Division of Electromagnetic Research. Res. Rep. No. MME-2

  • Song Y, Chen X, Kato K (2019) Approximating high-dimensional infinite-order \(U\)-statistics: statistical and computational guarantees. Electron J Stat 13(2):4794–4848

    Article  MathSciNet  Google Scholar 

  • Soukarieh I, Bouzebda S (2022) Exchangeably weighted bootstraps of general Markov U-process. Mathematics 10(20):3745

    Article  Google Scholar 

  • Soukarieh I, Bouzebda S (2023) Renewal type bootstrap for increasing degree \(U\)-process of a Markov chain. J Multivar Anal 195:105143

    Article  MathSciNet  Google Scholar 

  • Stute W (1986) Conditional empirical processes. Ann Stat 14(2):638–647

    Article  MathSciNet  Google Scholar 

  • Stute W (1991) Conditional \(U\)-statistics. Ann Probab 19(2):812–825

    Article  MathSciNet  Google Scholar 

  • Stute W (1994) \(L^p\)-convergence of conditional \(U\)-statistics. J Multivar Anal 51(1):71–82

    Article  MathSciNet  Google Scholar 

  • Stute W (1994) Universally consistent conditional \(U\)-statistics. Ann Stat 22(1):460–473

    Article  MathSciNet  Google Scholar 

  • Stute W (1996) Symmetrized NN-conditional \(U\)-statistics. Research developments in probability and statistics. VSP, Utrecht, pp 231–237

    Google Scholar 

  • van Delft A, Dette H (2022) A general framework to quantify deviations from structural assumptions in the analysis of nonstationary function-valued processes

  • van Delft A, Eichler M (2018) Locally stationary functional time series. Electron J Stat 12(1):107–170

    MathSciNet  Google Scholar 

  • van der Vaart AW (1998) Asymptotic statistics, vol 3. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • van der Vaart AW, Wellner JA (1996) Weak convergence and empirical processes. Springer series in statistics. Springer-Verlag, New York. With applications to statistics

  • Vitali G (1908) Sui gruppi di punti e sulle funzioni di variabili reali. Torino Atti 43:229–246

    Google Scholar 

  • Vituškin AG (1955) O mnogomernyh variaciyah. Gosudarstv. Izdat. Tehn.-Teor. Lit, Moscow

  • Vogt M (2012) Nonparametric regression for locally stationary time series. Ann Stat 40(5):2601–2633

    Article  MathSciNet  Google Scholar 

  • von Mises R (1947) On the asymptotic distribution of differentiable statistical functions. Ann Math Stat 18:309–348

    Article  MathSciNet  Google Scholar 

  • Wand MP, Jones MC (1995) Kernel smoothing, vol 60. Monographs on statistics and applied probability. Chapman and Hall Ltd., London

    Book  Google Scholar 

  • Watson GS (1964) Smooth regression analysis. Sankhyā Ser A 26:359–372

    MathSciNet  Google Scholar 

  • Yang J, Zhou Z (2022) Spectral inference under complex temporal dynamics. J Am Stat Assoc 117(537):133–155

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief, an Associate-Editor, and two referees for their extremely helpful remarks, which resulted in a substantial improvement of the original form of the work and a presentation that was more sharply focused.

Author information

Authors and Affiliations

Authors

Contributions

IS: Conceptualization, Methodology, Investigation, Writing—Original Draft, Writing—Review and Editing. SB: Conceptualization, Methodology, Investigation, Writing—Original Draft, Writing—Review and Editing. Both authors contributed equally to this work.

Corresponding author

Correspondence to Salim Bouzebda.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This appendix contains supplementary information that is an essential part of providing a more comprehensive understanding of the paper.

Lemma 8.0.4

Let \(I_{h}=\left[ C_{1} h, 1-C_{1} h\right] \). Suppose that kernel \(K_{1}\) satisfies Assumption 2 part(i). Then for \(q=0,1,2\) and \(m>1\):

Proof of Lemma 8.0.4

Notice that

The last inequality can be founded by applying some additional treatment with the help of the mean value theorem and the telescoping arguments. \(\square \)

Lemma 8.0.5

Suppose that kernel \(K_{1}\) satisfies Assumption 2 part (i) and let \(g:[0,1] \times {\mathscr {H}} \rightarrow {\mathbb {R}}\), \(({\textbf{u}}, {\textbf{x}}) \mapsto g({\textbf{u}}, {\textbf{x}})\) be continuously differentiable with respect to \({\textbf{u}}\). Then,

$$\begin{aligned}{} & {} \sup _{u \in I_{h}}\left|\frac{1}{n^m h^m} \sum _{{\textbf{i}}\in I_n^m} \prod _{k=1}^m K_{1}\left( \frac{u_k-i_k /n}{h}\right) g\left( \frac{i_k}{n}, x_{k}\right) - \prod _{k=1}^m g(u_k, x_k)\right|\nonumber \\{} & {} \quad = O\left( \frac{1}{nh^{m+1}}\right) +o(h). \end{aligned}$$
(8.86)

Proof of Lemma 8.0.5

Remark that

where

This completes the proof. \(\square \)

The following result is an exponential inequality for strongly mixing sequences given in Liebscher (1996).

Lemma 8.0.6

(Liebscher 1996, Theorem 2.1). Let \(\left\{ Z_{i, n}\right\} \) be a zero-mean triangular array such that \(\left|Z_{i, n}\right|\le b_{n}\) with \(\alpha \)-mixing coefficients \(\alpha (k)\). Then for any \(\varepsilon >0\) and \(S_{n} \le n\) with \(\epsilon >4 S_{n} b_{n}\),

$$\begin{aligned} {\mathbb {P}}\left( \left|\sum _{i=1}^{n} Z_{i, i}(u, x)\right|\ge \varepsilon \right) \le 4 \exp \left( -\frac{\varepsilon ^{2}}{64 \sigma _{S_{n}, n}^{2} \frac{n}{S_{n}}+\frac{8}{3} \varepsilon b_{n} S_{n}}\right) +4 \frac{n}{S_{n}} \alpha \left( S_{n}\right) . \end{aligned}$$
(8.87)

Lemma 8.0.7

Let \(\left\{ Z_{i, n}\right\} \) be a zero-mean triangular array such that \(\left|Z_{i, n}\right|\le b_{n}\) with \(\beta \)-mixing coefficients \(\beta (k)\). Then for any \(\varepsilon >0\) and \(S_{n} \le n\) with \(\epsilon >4 S_{n} b_{n}\),

$$\begin{aligned} {\mathbb {P}}\left( \left|\sum _{i=1}^{n} Z_{i, i}(u, x)\right|\ge \varepsilon \right) \le 4 \exp \left( -\frac{\varepsilon ^{2}}{64 \sigma _{S_{n}, n}^{2} \frac{n}{S_{n}}+\frac{8}{3} \varepsilon b_{n} S_{n}}\right) +4 \frac{n}{S_{n}} \beta \left( S_{n}\right) . \end{aligned}$$
(8.88)

Proof of Lemma 8.0.7

Using Lemma 8.0.6 and the fact that for any \(\sigma \)-algebra \({\mathcal {A}}\) and \({\mathcal {B}}\), \(\alpha ({\mathcal {A}},{\mathcal {B}}) \subseteq \beta ({\mathcal {A}},{\mathcal {B}})\), Lemma 8.0.11 holds.

Lemma 8.0.8

(de la Peña 1992) Let \(X_{1}, \ldots , X_{n}\) be a sequence of independent random elements taking values in a Banach space \((B,\Vert \cdot \Vert )\) with \({\mathbb {E}} X_{i}=0\) for all i. Let \(\left\{ \varepsilon _{i}\right\} \) be a sequence of independent Bernoulli r.v’s independent of \(\left\{ X_{i}\right\} .\) Then, for any convex increasing function \(\Phi \),

$$\begin{aligned} {\mathbb {E}} \Phi \left( \frac{1}{2}\left\| \sum _{i=1}^{n} X_{i} \varepsilon _{i}\right\| \right) \le {\mathbb {E}} \Phi \left( \left\| \sum _{i=1}^{n} X_{i}\right\| \right) \le {\mathbb {E}} \Phi \left( 2\left\| \sum _{i=1}^{n} X_{i} \varepsilon _{i}\right\| \right) . \end{aligned}$$

Proposition 8.0.9

(Arcones and Giné 1993, Proposition 3.6) Let \(\{{X}_i: i \in {n}\}\) be a process satisfying, for \(m \geqslant 1:\)

$$\begin{aligned} \left( {\mathbb {E}}\left\| {X}_i-{X}_j\right\| ^{p}\right) ^{1/p} \leqslant \left( \frac{p-1}{q-1}\right) ^{m/2}\left( {\mathbb {E}}\left\| {X}_i-{X}_j\right\| ^{q}\right) ^{1/q}, \quad 1< q<p < \infty , \end{aligned}$$

and the semi-metric:

$$\begin{aligned} \rho (j,i) =\left( {\mathbb {E}}\left\| {X}_i-{X}_j\right\| ^{2}\right) ^{1/2}. \end{aligned}$$

There exists a constant \(K=K(m)\) such that:

$$\begin{aligned} {\mathbb {E}}\sup _{i,j \in {n}}\left\| {X}_i-{X}_j\right\| \leqslant K \int _0^{D} [\log {N(\epsilon , {n}, \rho )}]^{m/2}d\epsilon , \end{aligned}$$

where D is the \(\rho \)-diameter of n.

Corollary 8.0.10

(Hall and Heyde 1980) Suppose that X and Y are random variables which are \({\mathscr {G}}\) and \({\mathscr {H}}\)-measurable, respectively, and that \({\mathbb {E}}|X|^{p}<\infty , {\mathbb {E}}|Y|^{q}<\infty \), where p, \(q>1, p^{-1}+q^{-1}<1\). Then

$$\begin{aligned} |{\mathbb {E}}X Y- {\mathbb {E}}X {\mathbb {E}}Y|\leqslant 8\Vert X\Vert _{p}\Vert Y \Vert _{q}[\alpha ({\mathscr {G}}, {\mathscr {H}})]^{1-p^{-1}-q^{-1}}. \end{aligned}$$

Lemma 8.0.11

Suppose that X and Y are random variables which are \({\mathscr {G}}\) and \({\mathscr {H}}\)-measurable, respectively, and that \({\mathbb {E}}|X|^{p}<\infty , {\mathbb {E}}|Y|^{q}<\infty \), where \(p>0\),

$$\begin{aligned} q>1, p^{-1}+q^{-1}<1. \end{aligned}$$

Then

$$\begin{aligned} |{\mathbb {E}}X Y- {\mathbb {E}}X {\mathbb {E}}Y|\leqslant 8\Vert X\Vert _{p}\Vert Y \Vert _{q}[\beta ({\mathscr {G}}, {\mathscr {H}})]^{1-p^{-1}-q^{-1}}. \end{aligned}$$

Proof of Lemma 8.0.11

This Lemma follows directly using Corollary 8.0.10 and the fact that for any \(\sigma \)-algebra \({\mathcal {A}}\) and \({\mathcal {B}}\), \(\alpha ({\mathcal {A}},{\mathcal {B}}) \subseteq \beta ({\mathcal {A}},{\mathcal {B}})\). \(\square \)

Lemma 8.0.12

Let \(V_{1}, \ldots , V_{L}\) be strongly mixing random variables measurable with respect to the \(\sigma \)-algebras \({\mathscr {F}}_{i_{1}}^{j_{1}}, \ldots , {\mathscr {F}}_{i_{L}}^{j_{L}}\) respectively with \(1 \leqslant i_{1}<j_{1}<i_{2}<\cdots <j_{L} \leqslant n, i_{l+1}-j_{l} \geqslant w \geqslant 1\) and \(\left|V_{j}\right|\leqslant 1\) for \(j=1, \ldots \), L. Then

$$\begin{aligned} \left|{\mathbb {E}}\left( \prod _{j=1}^{L} V_{j}\right) -\prod _{j=1}^{L} {\mathbb {E}}\left( V_{j}\right) \right|\leqslant 16(L-1) \alpha (w), \end{aligned}$$

where \(\alpha (w)\) is the strongly mixing coefficient.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soukarieh, I., Bouzebda, S. Weak convergence of the conditional U-statistics for locally stationary functional time series. Stat Inference Stoch Process 27, 227–304 (2024). https://doi.org/10.1007/s11203-023-09305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-023-09305-y

Keywords

Mathematics Subject Classification

Navigation