Skip to main content
Log in

Performance of theoretical methods and basis sets on the molecular structure, atomisation and ionisation energies, electron affinity, and vibrational spectrum of silylene

  • Published:
Silicon Chemistry

Abstract

This work compares the performance of theoretical methods and basis sets on the molecular structure, atomisation and ionisation energies, electron affinity, and vibrational spectrum of silylene. Silylene, its cation and anion have been studied in 1 A 1, 2 A 1 and 2 B 1 states, respectively, in the gas phase and C2v symmetry. The methods considered are second-order Møller-Plesset perturbation theory (MP2), the density functional theory (DFT), Gaussian-2 (G2) and complete basis set methods (CBS-4M and CBS-Q). The basis sets used are 6-31G(d,p), 6-311G(d,p), 6-31++G(d,p) and 6-311++G(d,p). The functional used for the DFT method is B3LYP. Silylene and its cation and anion have been optimised using the MP2 and DFT methods and the named basis sets. Single-point energy calculations (G2, CBS-4M and CBS-Q) were performed using MP2/6-311++G(d,p) structures and these energies have been used to calculate atomisation energy, ionisation energy and adiabatic electron affinity. Frequency calculations were also done and the raw vibrational frequencies were assigned. It is interesting to note the close similarity between the predicted parameters and some of the available literature values. The results obtained are consistent and converge with different basis sets with improved size and quality. However, the parameters obtained are very much method dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lickiss PD (1994) In: King RB (ed) Encyclopedia of inorganic chemistry, vol 7. Wiley, Chichester, p 3770

    Google Scholar 

  2. Ignacio EW, Schlegel HB (1990) J Phys Chem 94:7439

    Article  CAS  Google Scholar 

  3. Kasdan A, Herbst E (1975) J Chem Phys 62:541

    Article  CAS  Google Scholar 

  4. Nimlos MR, Barney EG (1986) J Am Chem Soc 108:6522

    Article  CAS  Google Scholar 

  5. Boo BH, Armentrout PB (1987) J Am Chem Soc 109:3549

    Article  CAS  Google Scholar 

  6. Yamada C, Kanamori H, Hirota E, Nishiwaki N, Itabashi N, Kato K, Goto T (1989) J Chem Phys 91:4582

    Article  CAS  Google Scholar 

  7. Michels HH, Hobbs RH (1993) Chem Phys 207:389

    CAS  Google Scholar 

  8. Allen WD, Schaefer III HF (1986) Chem Phys 108:243

    Article  CAS  Google Scholar 

  9. Feller D, Dixon DA (1999) J Phys Chem A 103:6413

    Article  CAS  Google Scholar 

  10. Pak C, Rienstra-Kiracofe JC, Schaefer III HF (2000) J Phys Chem A 104:11232

    Article  CAS  Google Scholar 

  11. Malcolm NOJ, Yeager DL (2000) J Chem Phys 113:8

    Article  CAS  Google Scholar 

  12. Ikuta S, Wakamatsu S (2004) J Chem Phys 120:11071

    Article  CAS  Google Scholar 

  13. Wong His-Wu, Nieto JCA, Swihart MT, Broadbelt LJ (2004) J Phys Chem A 108:874

    Article  CAS  Google Scholar 

  14. Larkin DL, Schaefer III HF (2004) J Chem Phys 121:9361

    Article  CAS  Google Scholar 

  15. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory, Wiley, Chichester

    Google Scholar 

  16. Gaussian 03, Revision C.02 (2004) Frisch MJ et al. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  17. GaussView, Version 3.09 (2003) Dennington R II, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R, Semichem Inc., Shawnee Mission, KS

    Google Scholar 

  18. Møller C, Plesset MS (1934) Phy Rev 46:622

    Article  Google Scholar 

  19. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503

    Article  CAS  Google Scholar 

  20. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275

    Article  CAS  Google Scholar 

  21. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281

    Article  CAS  Google Scholar 

  22. Head-Gordon M, Head-Gordon T (1994) Chem Phys Lett 220:122

    Article  CAS  Google Scholar 

  23. Saebo S, Almlof J (1989) Chem Phys Lett 154:83

    Article  CAS  Google Scholar 

  24. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  25. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  26. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  27. Francl MM, Petro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  28. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  29. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comp Chem 4:294

    Article  CAS  Google Scholar 

  30. Curtiss LA, Raghavachari K, Pople JA (1993) J Chem Phys 98:1293

    Article  CAS  Google Scholar 

  31. Ochtersk JW, Petersson GA, Montgomery Jr JA (1996) J Chem Phys 104:2598

    Article  Google Scholar 

  32. Montgomery Jr JA, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532

    Article  CAS  Google Scholar 

  33. Petersson GA, Tensfeldt TG, Montgomery Jr JA (1991) J Chem Phys 94:6091

    Article  CAS  Google Scholar 

  34. Gupte GR, Prasad R (1998) Int J Mod Phys B 12:1607

    Article  CAS  Google Scholar 

  35. Hirota E, Ishikawa H (1999) J Chem Phys 110:4254

    Article  CAS  Google Scholar 

  36. Kasdan A, Herbst E, Lineberger WC (1975) J Chem Phys 62:541

    Article  CAS  Google Scholar 

  37. Andrews L, Wang X (2002) J Phys Chem A 106:7696

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponnadurai Ramasami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinoo, F.S., Ramasami, P. Performance of theoretical methods and basis sets on the molecular structure, atomisation and ionisation energies, electron affinity, and vibrational spectrum of silylene. Silicon Chem 3, 251–257 (2007). https://doi.org/10.1007/s11201-007-9027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11201-007-9027-x

Keywords

Navigation