Skip to main content
Log in

Magnetic signature of hydrocarbon-contaminated soils and sediments at the former oil field Hänigsen, Germany

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Magnetic properties of hydrocarbon (HC) containing soils and sediments from two sites (Site A and B) of the former oil-field Hänigsen were analyzed in order to determine whether magnetic methods can be employed to delineate HC contamination of soils and sediments. Magnetic parameters such as magnetic susceptibility and induced isothermal remanent magnetizations, as well as soil and sediment properties such as pH, iron content and water content, HC content and most probable number counts of iron-metabolizing microorganisms were determined. The magnetic concentration-dependent parameters for HC contaminated samples were 25 times higher in soils from Site A than in sediment samples from Site B. However, at Site B the magnetic susceptibility was still four times higher in comparison to lithologically similar non-contaminated sediment samples from a third Site C. Newly formed magnetite containing mainly single domain particles was responsible for the magnetic enhancement, whereas superparamagnetic grains represented only a minor component. Site A had an acidic pH compared to neutral pH at Site B, and a higher crystalline and bioavailable total iron content. Nevertheless, Site B samples contained significant numbers of both iron(II)-oxidizing and iron(III)-reducing microorganisms indicating that microbial iron cycling might have taken place at this site and potentially played a role for iron mineral transformation, including magnetite (trans)formation. The content of total non-polar hydrocarbons (TNPH) at Site A was one order of magnitude higher than at Site B. Only at Site A magnetic susceptibility correlated well with TNPH. Our results demonstrate that HC contaminated samples had an enhanced magnetite content compared to non-contaminated soils and sediments. Therefore, magnetic methods may provide a quick and cost-effective way to assess HC contamination in soils and sediments. However, more field sites and laboratory investigations are needed to reveal the complex nature of the processes involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldana M., Costanzo-Alvarez V. and Diaz M., 2003. Magnetic and mineralogical studies to characterize oil reservoirs in Venezuela. The Leading Edge, 22, 526–529.

    Article  Google Scholar 

  • Aldana M., Costanzo-Álvarez V., Gómez L., González C., Díaz M., Silva P. and Rada M., 2011. Identification of magnetic minerals related to hydrocarbon authigenesis in venezuelan oil fields using an alternative decomposition of isothermal remanence curves. Stud. Geophys. Geod., 55, 343–358.

    Article  Google Scholar 

  • Bazylinski D.A. and Frankel R.B., 2003. Biologically controlled mineralization in prokaryotes. Rev. Miner. Geochem., 54, 217–247.

    Article  Google Scholar 

  • Bekins B.A., Godsy E.M. and Warren E., 1999. Distribution of microbial physiologic types in an aquifer contaminated by crude oil. Microb. Ecol., 37, 263–275.

    Article  Google Scholar 

  • Bloemendal J., King J.W., Hall F.R. and Doh S.J., 1992. Rock magnetism of late Neogene and Pleistocene deep-sea sediments: relations to sediment source, diagenetic process, and sediment lithology. J. Geophys. Res., 97, 4361–4375.

    Article  Google Scholar 

  • Blume H.P., Deller B., Leschber R., Paetz A. and Wilke B.M., 2000. Handbuch der Bodenuntersuchung: Terminologie, Verfahrensvorschriften und Datenblätter - Physikalische, chemische, biologische Untersuchungsverfahren - Gesetzliche Regelwerk. Wiley-VCH, Beuth, Weinheim, Germany (in German).

    Google Scholar 

  • Chang L., Roberts A.P., Tang Y., Rainford B.D., Muxworthy A.R. and Chen, Q., 2008. Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). J. Geophys. Res., 113, B06104.

    Article  Google Scholar 

  • Cochran W.G., 1950. Estimation of bacterial densities by means of the “most probable number”. Biometrics, 6, 105–116.

    Article  Google Scholar 

  • Díaz M., Aldana M., Jiménez S.M., Sequera P. and Costanzo-Alvarez V., 2006. EPR and EOM studies in well samples from some Venezuelan oil fields: correlation with magnetic authigenesis. Física del Petróleo Revista Mexicana de Fisica, 52, 63–65.

    Google Scholar 

  • Evans M.E. and Heller F., 2003. Environmental Magnetism. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Fischer W.R., 1988. Microbiological reactions of iron in soils. In: Stucki J.W., Goodman B.A. and Schwertmann U. (Eds.), Iron in Soils and Clay Minerals. Reidel, Dordrecht, The Netherlands, 715–749.

    Google Scholar 

  • Gautam P., Blaha U. and Appel E., 2005. Magnetic susceptibility of dust-loaded leaves as a proxy for traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmos. Environ., 39, 2201–2211.

    Article  Google Scholar 

  • Grimley D.A., Arruda N.K. and Bramstedt M.W., 2004. Using magnetic susceptibility to facilitate more rapid reproducible and precise delineation of hydric soils in the Midwest USA. Catena, 58, 183–213.

    Article  Google Scholar 

  • Grimley D.A. and Arruda N.K., 2007. Observations of magnetite dissolution in poorly drained soils. Soil Sci., 172, 968–982.

    Article  Google Scholar 

  • Grimley D.A. and Vepraskas M.J., 2000. Magnetic susceptibility for use in delineating hydric soils. Soil Sci. Soc. Am. J., 64, 2174–2180.

    Article  Google Scholar 

  • Guzmán O., Costanzo-Álvarez V., Aldana M. and Díaz M., 2011. Study of magnetic contrasts applied to hydrocarbon exploration in the Maturín Sub-Basin (eastern Venezuela). Stud. Geophys. Geod., 55, 359–376.

    Article  Google Scholar 

  • Hanesch M. and Scholger R., 2002. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ. Geol., 42, 857–870.

    Article  Google Scholar 

  • Hegler F., Posth N.R., Jiang J. and Kappler A., 2008. Physiology of phototrophic iron(II)-oxidizing bacteria: Implications for modern and ancient environments. FEMS Microbiol. Ecol., 66, 250–260.

    Article  Google Scholar 

  • Kao C.M., Chen S.C., Liu J.K. and Wang Y.S., 2001. Application of microbial enumeration technique to evaluate the occurrence of natural bioremediation. Water Res., 35, 1951–1960.

    Article  Google Scholar 

  • Kapička A., Jordanova N., Petrovský E. and Ustjak S., 2000. Magnetic stability of power-plant fly ash in different soil solutions. Phys. Chem. Earth, 25, 431–436.

    Google Scholar 

  • Kapička A., Petrovský E., Ustjak S. and Macháčková K., 1999. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. J. Geochem. Explor., 66, 291–297.

    Article  Google Scholar 

  • Kappler A. and Straub K.L., 2005. Geomicrobiological cycling of iron. Rev. Miner. Geochem., 59, 85–108.

    Article  Google Scholar 

  • Klee J.A., 1993. A computer program for the determination of most probable number and its confidence limits. J. Microbiol. Methods, 18, 91–98.

    Article  Google Scholar 

  • Krs M., Novák F., Krsová M., Pruner P., Kouklíková L. and Jansa J., 1992. Magnetic properties and metastability of greigite-smythite mineralization in brown-coal basins of the Krušné hory Piedmont, Bohemia. Phys. Earth Planet. Inter., 70, 273–287.

    Article  Google Scholar 

  • Kruiver P.P. and Passier H.F., 2001. Coercivity analysis of magnetic phases in sapropel S1 related to variations in redox conditions, including an investigation of the S ratio. Geochem. Geophys. Geosyst., 2, 2001GC000181.

    Google Scholar 

  • Liu J., Zhu R., Roberts A.P., Li S. and Chang J.-H., 2004. High resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait. J. Geophys. Res., 109 DOI: 10.1029/2003JB002813.

  • Liu Q.S., Liu Q.S., Chan L.S., Yang T., Xia X.H. and Tongjin C., 2006. Magnetic enhancement caused by hydrocarbon migration in the Mawangmiao Oil Field, Jianghan Basin, China. J. Pet. Sci. Eng., 53, 25–33.

    Article  Google Scholar 

  • Lovley D.R., Stolz J.F., Nord. G.L. and Phillips E.J.P., 1987. Anaerobic production of magnetite by a dissimilatory ironreducing microorganism. Nature, 330, 252–254.

    Article  Google Scholar 

  • Lovley D.R., Baedecker M.J., Lonergan D.J., Cozzarelli J.M., Phillips E.J.P. and Siegel D.J., 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature, 339, 297–300.

    Article  Google Scholar 

  • Lovley D.R. and Anderson R.T., 2000. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeol. J., 8, 77–88.

    Article  Google Scholar 

  • Maher B.A., 1986. Characterization of soils by mineral magnetic measurements. Phys. Earth. Planet. Inter., 42, 76–92.

    Article  Google Scholar 

  • Maher B.A., 1991. Inorganic formation of ultrafine-grained magnetite. In: Frankel R.B. and Blakemore R.P. (Eds.), Iron Biominerals. Plenum, New York, 179–191.

    Chapter  Google Scholar 

  • Maher B.A., 1998. Magnetic properties of modern soils and Quarternary loessic paleosols: Paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 25–54.

    Article  Google Scholar 

  • Martins C.C., Mahiques M.M., Bícego M.C., Fukumoto M.M. and Montone R.C., 2007. Comparison between anthropogenic hydrocarbons and magnetic susceptibility in sediment cores from the Santos Estuary, Brazil. Mar. Pollut. Bull., 54, 240–246.

    Article  Google Scholar 

  • Moeslund L., Thamdrup B. and Jørgensen B.B., 1994. Sulfur and iron cycling in coastal sediment: radiotracer studies and seasonal dynamics. Biogeochem., 27, 129–152.

    Google Scholar 

  • Morris W.A., Versteeg J.K., Marvin C.H., McCarry B.E. and Rukavina N.A., 1994. Preliminary comparisons between magnetic susceptibility and polycyclic aromatic hydrocarbon content in sediments from Hamilton Harbour, Western Lake Ontario. Sci. Tot. Environ., 152, 153–160.

    Article  Google Scholar 

  • Muxworthy A.R., Matzka J. and Petersen N., 2001. Comparison of magnetic parameters of urban atmospheric particulate matter with pollution and meteorological data. Atmos. Environ., 35, 4379–4386.

    Article  Google Scholar 

  • Petrovský E. and Ellwood B.B., 1999. Magnetic monitoring of air-, land-, and water-pollution. In: Maher B.A. and Thompson R. (Eds.), Quaternary Climates, Environments and Magnetism. Cambridge University Press, Cambridge, U.K., 279–322.

    Chapter  Google Scholar 

  • Raven K.P., Jain A. and Loeppert R.H., 1998. Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., 32, 344–349.

    Article  Google Scholar 

  • Rijal M.L., Appel E., Petrovský E. and Blaha U., 2010. Change of magnetic properties due to fluctuations of hydrocarbon contaminated groundwater in unconsolidated sediments. Environ. Pollut., 158, 1756–1762.

    Article  Google Scholar 

  • Roden E.E. and Zachara J.M., 1996. Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environ. Sci. Technol., 30, 1618–1628.

    Article  Google Scholar 

  • Rossello-Mora R.A., Caccavo F., Osterlehner K., Springer N., Spring S., Schüler D., Ludwig W., Amann R., Vanncanneyt M. and Schleifer K.H., 1995. Isolation and taxonomic characterization of a halotolerant, facultatively iron-reducing bacterium. Syst. Appl. Microbiol., 17, 569–573.

    Article  Google Scholar 

  • Salama I.A., Koch G.G. and Tolley, H.D., 1978. On the estimation of the most probable number in a serial dilution technique. Commun. Stat. Theor. Methodol., A7, 1267–1281.

    Article  Google Scholar 

  • Spiteri C., Kalinski V., Rösler W., Hoffmann V., Appel E. and MAGPROX Team., 2005. Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environ. Geol., 49, 1–9.

    Article  Google Scholar 

  • Stookey L.L., 1970. Ferrozine - A New Spectrophotometric Reagent for Iron. Anal. Chem., 42, 779–781.

    Article  Google Scholar 

  • Straub K.L., Kappler A. and Schink B., 2005. Enrichment and isolation of ferric-iron- and humicacid-reducing bacteria. Methods Enzymol., 397, 58–77.

    Article  Google Scholar 

  • Straub K.L., Schönhuber W.A., Buchholz-Cleven B.E. and Schink B., 2004. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol. J., 21, 371–378.

    Article  Google Scholar 

  • Strzyszcz Z. and Magiera T., 1998. Magnetic susceptibility and heavy metals contamination in soils of Southern Poland. Phys. Chem. Earth, 23, 1127–1131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Appel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rijal, M.L., Porsch, K., Appel, E. et al. Magnetic signature of hydrocarbon-contaminated soils and sediments at the former oil field Hänigsen, Germany. Stud Geophys Geod 56, 889–908 (2012). https://doi.org/10.1007/s11200-010-0040-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-010-0040-8

Keywords

Navigation