Skip to main content
Log in

Do What Darwin Did

How to Deal with Teleological Misconceptions in the Classroom

  • Article
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

We argue that teleological thinking plays a central role in biology and, more specifically, in theory of natural selection, and, therefore, the didactic goal cannot be its unnuanced elimination. In this sense, we will suggest that students’ teleological views can be used as the starting point for the construction of knowledge in this area of biology. To establish possible didactic strategies, we will turn to the way Darwin himself dealt with the teleology of former naturalists: Darwin had to modify several aspects of the previous teleological thinking: He had to reform functional biology. We will develop an alternative approach to teleology problem by conceiving of the contemporary student as a pre-Darwinian teleologist. Working from there, we will sketch two possible approaches for dealing with the students’ teleological thinking. The first approach seeks to modify the students’ intuitive functional biology in order to bring it closer to the modified functional biology developed by Darwin but avoiding the use of notions from evolutionary biology. The second approach involves using theory of natural selection as a guide to reformulate the functional biology of the students.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Notes

  1. One important clarification on the notion of function is incumbent. The idea that function attributions are independent of and previous to TNS (assumed in our work) is incompatible with some philosophical approaches concerning functions. For instance, it is incompatible with the approach of researchers who regard the claim that a trait has a function as equivalent to a claim about the past fitness of that trait (Garson 2017; Godfrey-Smith 1994; Millikan 1984, 1989; Neander 1991a, 1991b; Wright 1973), or about its present fitness (Bigelow and Pargetter 1987; Canfield 1964; Horan 1989; Walsh 1996). Our work assumes that those approaches that reduce functional biology to evolutionary biology are inadequate on this, but it would exceed our purpose trying to argue for it here. However, it is possible to elucidate the relevance of Darwinian evolutionary biology to functional biology, which has probably inspired the proponents of these etiological approaches. For, if a specific functional attribution to a given trait can be made without knowledge of its evolutionary history, the kind of functions we currently attribute to traits, in general, was strongly modified by the Darwinian revolution. We will return to this later, and it will be a central point of our perspective.

  2. This rejection is based on several reasons, among which are the supposition that teleology inverts the temporal relation between causes and effects (Estany 1993), that is not consistent with the deductive-nomological model of explanation (Hempel 1965), and that it has supernatural connotations (Allen et al. 1998).

  3. As we claimed before, we assume in this work a non-etiological conception of function. There is, however, an intuition behind that approach that is essentially correct, since natural selection plays a heuristic role in determining what kinds of functions the traits of living organisms can perform, as can be noticed in the restructuring of functional biology carried out by Darwin. The error in that approach consists in assuming that determining in particular what specific function a trait of an organism serves involves necessarily an evolutionary study. This simply does not sit well with actual scientific practice, since biologists attribute function to a trait, in almost all cases, without knowledge of its evolutionary history.

References

  • Adúriz-Bravo, A. (2013). A ‘semantic’ view of scientific models for science education. Science & Education, 22(7), 1593–1611.

    Article  Google Scholar 

  • Allen, C., Bekoff, M., & Lauder, G. (1998). Nature’s purposes. Analyses of function and design in biology. Cambridge: MIT Press.

    Google Scholar 

  • Alters, B., & Nelson, C. (2002). Perspective: teaching evolution in higher education. Evolution, 56(10), 1891–1901.

    Article  Google Scholar 

  • Ariza, Y., Lorenzano, P., & Adúriz-Bravo, A. (2016a). Meta-theoretical contributions to the constitution of a model-based didactics of science. Science & Education, 25(7), 747–773.

    Article  Google Scholar 

  • Ariza, Y., Lorenzano, P., & Adúriz-Bravo, A. (2016b). Una perspectiva estructuralista de la enseñanza modelo-teórica de las ciencias. Revista Latinoamericana de Estudios Educativos, 12(1), 11–38.

    Google Scholar 

  • Astolfi, J., & Peterfalvi, B. (1997). Stratégies de travail des obstacles: Dispositifs et ressorts. Aster, 25, 193–216.

    Article  Google Scholar 

  • Beatty, J. H. (1990). Teleology and the relationship between biology and the physical sciences in the nineteenth and twentieth centuries. In F. Durham & R. D. Purrington (Eds.), Some truer method: reflections on the heritage of Newton (pp. 113–144). New York: Columbia University Press.

    Google Scholar 

  • Berland, L., Schwarz, C., Krist, C., Kenyon, L., Lo, A., & Reiser, B. (2015). Epistemologies in practice: making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(7), 1082–1112.

    Article  Google Scholar 

  • Bigelow, J., & Pargetter, R. (1987). Functions. The Journal of Philosophy, 84(4), 181–196.

    Article  Google Scholar 

  • Bishop, B. A., & Anderson, C. W. (1990). Student conceptions of natural selection and its role in evolution. Journal of Research in Science Teaching, 27(5), 415–427.

    Article  Google Scholar 

  • Bowler, P. (1983). The eclipse of Darwinism. In Anti-Darwinian evolution theories in the decades around 1900. Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Canfield, J. (1964). Teleological explanations in biology. British Journal for the History of Science, 14, 285–295.

    Google Scholar 

  • Caponi, G. (2003). Darwin: entre Paley y Demócrito. História, Ciências. Saúde. Manguinhos, 10(3), 993–1023.

    Google Scholar 

  • Caponi, G. (2011). La segunda agenda darwiniana. Contribución preliminar a una historia del programa adaptacionista. México D.F.: Centro de estudios filosóficos, políticos y sociales Vicente Lombardo Toledano.

  • Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72, 741–764.

    Article  Google Scholar 

  • Darwin, C. R. (1859). On the origin of species by means of natural selection. London: John Murray.

    Google Scholar 

  • Darwin, C. R. (1861). On the two forms, or dimorphic condition, in the species of Primula, and on their remarkable sexual relations. Journal of the Proceedings of the Linnean Society of London (Botany), VI, 77–96.

    Google Scholar 

  • Darwin, C. R. (1871). The descent of man, and selection in relation to sex. London: John Murray.

    Book  Google Scholar 

  • Darwin, C. R. (1876). The effects of cross and self fertilisation in the vegetable kingdom. London: John Murray.

    Book  Google Scholar 

  • Darwin, C. R. (1877a). The different forms of flowers on plants of the same species. London: John Murray.

    Book  Google Scholar 

  • Darwin, C. R. (1877b). The various contrivances by which orchids are fertilised by insects. London: J. Murray.

    Book  Google Scholar 

  • Darwin, C. R. (1909). Essay of 1844. In F. Darwin (Ed.), The foundations of the origin of species. Two Essays Written in 1842 and 1844 (pp. 57–255). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Dawkins, R. (2004). A devil’s Chaplian. Selected Essays by Richard Dawkins. London: Phoenix.

    Google Scholar 

  • Dawkins, R., & Wong, Y. (2016). The ancestor’s tale. A pilgrimage to the dawn of evolution. Revised and expanded. Boston: Houghton Mifflin Company.

    Google Scholar 

  • De Vecchi, G., & Giordan, A. (2002). L’enseignement scientifique comment faire pour que “ça marche”? París: Delagrave Édition.

    Google Scholar 

  • Dennett, D. (1995). Darwin’s dangerous idea. New York: Simon and Schuster.

    Google Scholar 

  • Driver, R., Guesne, E., & Tiberghien, A. (Eds.). (1985). Children’s ideas in science. Milton Keynes: Open University Press.

    Google Scholar 

  • Duit, R. (1999). Conceptual change approaches in science education. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New perspectives on conceptual change (pp. 263–282). Amsterdam: Pergamon.

    Google Scholar 

  • Duit, R. (2006). STCSE–bibliography: students’ and teachers’ conceptions and science education. Kiel: IPN – Leibniz Institute for Science Education.

    Google Scholar 

  • Estany, A. (1993). Introducción a la filosofía de la ciencia. Barcelona: Grijalbo-Mondadori.

    Google Scholar 

  • Fernández, J., & Sanjosé, V. (2007). Permanencia de ideas alternativas sobre evolución de las especies en la población culta no especializada. Didáctica de las Ciencias Experimentales y Sociales, 21, 119–128.

    Google Scholar 

  • Futuyma, D. (2009). Evolution. Sunderland: Sinauer.

    Google Scholar 

  • Gallego Jiménez, A., & Muñoz Muñoz, A. (2015). Análisis de las hipótesis evolutivas en alumnos de educación secundaria y bachillerato. Revista Electrónica de Enseñanza de las Ciencias, 14(1), 35–54.

    Google Scholar 

  • Garson, J. (2017). A generalized selected effects theory of function. Philosophy of Science, 84, 523–543.

    Article  Google Scholar 

  • Ghiselin, M. T. (1994). Darwin’s language may seem teleological, but his thinking is another matter. Biology and Philosophy, 9(4), 489–492. https://doi.org/10.1007/BF00850377.

    Article  Google Scholar 

  • Gil Pérez, D., Carrascosa, J., Dumas Carré, A., Furió, C., Gallego, R., Gené, E., & González, E. (1999). ¿Puede hablarse de consenso constructivista en la educación científica? Enseñanza de las Ciencias, 17(3), 503–512.

    Google Scholar 

  • Ginnobili, S. (2009). Adaptación y función. Ludus Vitalis, 17(31), 3–24.

    Google Scholar 

  • Ginnobili, S. (2010). La teoría de la selección natural darwiniana. Theoria, 25(1), 37–58.

    Google Scholar 

  • Ginnobili, S. (2013). La utilidad de las flores: el movimiento del diseño inteligente y la biología contemporánea. Filosofia e História Da Biologia, 8(2), 341–359.

    Google Scholar 

  • Ginnobili, S. (2014). La inconmensurabilidad empírica entre la teoría de la selección natural darwiniana y el diseño inteligente de la teología natural. Theoria, 29(3), 375–394.

    Article  Google Scholar 

  • Ginnobili, S. (2016). Missing concepts in natural selection theory reconstructions. History and Philosophy of the Life Sciences, 38(8), 1–33.

    Google Scholar 

  • Godfrey-Smith, P. (1994). A modern history theory of functions. Nous, 28(3), 344–362.

    Article  Google Scholar 

  • González Galli, L. (2016). El problema de la teleología y la metáfora del diseño en biología: cuestiones epistemológicas e implicancias didácticas. TED. Tecné, Episteme y Didaxis, 40, 240–276.

    Google Scholar 

  • González Galli, L., & Meinardi, E. (2011). The role of teleological thinking in learning the Darwinian model of evolution. Evolution: Education and Outreach, 4(1), 145–152.

    Google Scholar 

  • González Galli, L., & Meinardi, E. (2015). Obstáculos para el aprendizaje del modelo de evolución por selección natural en estudiantes de escuela secundaria de Argentina. Ciencia & Educação, 21(1), 101–122.

    Google Scholar 

  • González Galli, L., & Meinardi, E. (2016). Obstáculos para el aprendizaje del modelo de evolución por selección natural. In N. Cuvi, E. Servilla, R. Ruiz, & M. P. Samper (Eds.), Evolucionismo en América y Europa. Antropología, biología, política y educación. Quito: Ediciones Doce Calles–FLACSO–Universidad Autónoma de México– Pontificia Universidad Católica de Ecuador.

    Google Scholar 

  • González Galli, L., Pérez, G., & Gómez Galindo, A. (2020). The self-regulation of teleological thinking in natural selection learning. Evolution: Education and Outreach, 13(1), 1–16.

    Google Scholar 

  • Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Belknap Press.

    Google Scholar 

  • Gregory, T. (2009). Understanding natural selection: essential concepts and common misconceptions. Evolution Education and Outreach, 2(2), 156–175.

    Article  Google Scholar 

  • Greiffenhagen, C., & Sherman, W. (2008). Kuhn and conceptual change: on the analogy between conceptual changes in science and children. Science & Education, 17, 1–26. https://doi.org/10.1007/s11191-006-9063-5.

    Article  Google Scholar 

  • Halloun, I., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(11), 1056–1065.

    Article  Google Scholar 

  • Hempel, C. G. (1965). The logic of functional analysis. In Aspects of scientific explanation. New York: Free Press.

    Google Scholar 

  • Horan, B. L. (1989). Functional explanations in sociobiology. Biology and Philosophy, 4, 131–158.

    Article  Google Scholar 

  • Inagaki, K., & Hatano, G. (2006). Young children’s conception of the biological world. Current Direction of Psychological Science, 15(4), 177–181.

    Article  Google Scholar 

  • Jiménez Aleixandre, M. (1991). Cambiando las ideas sobre el cambio biológico. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 9(3), 248–256.

    Google Scholar 

  • Johsua, S., & Dupin, J. (1993). Introduction à la didactique des sciences et des mathématiques. París: Presses Universitaries de France.

    Google Scholar 

  • Kampourakis, K. (2014). Understanding evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kampourakis, K. (2020). Students “teleological misconceptions” in evolution education: why the underlying design stance, not teleology per se, is the problem. Evolution: Education and Outreach, 13(1), 1–12. https://doi.org/10.1186/s12052-019-0116-z.

  • Keil, F. (1994). The birth and nurturance of concepts by domains: the origins of concepts of living things. In L. Hirschfeld & S. Gelman (Eds.), Mapping the mind: domain specificity in cognition and culture (pp. 234–254). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Kelemen, D. (1999). The scope of teleological thinking in preschool children. Cognition, 70(3), 241–272.

    Article  Google Scholar 

  • Kelemen, D. (2012). Teleological minds. How natural intuitions about agency and purpose influence learning about evolution. In K. Rosengren, S. Brem, M. Evans, & G. Sinatra (Eds.), Evolution challenges. Integrating research and practice in teaching and learning about evolution. Dordrecht: Springer.

    Google Scholar 

  • Kelemen, D., & Rosset, E. (2009). The human function compunction: teleological explanation in adults. Cognition, 111(1), 138–143.

    Article  Google Scholar 

  • Kirby, W. (1836). On the power, wisdom and goodness of god, as manifested in the creation of animals, and in their history, habits and instincts. Philadelphia: Carey, Lea and Blanchard.

    Google Scholar 

  • Lennox, J. G. (1993). Darwin was teleologist. Biology and Philosophy, 8, 409–421.

    Article  Google Scholar 

  • Lennox, J. G., & Kampourakis, K. (2013). Biological teleology: the need for history. In K. Kampourakis (Ed.), The philosophy of biology: a companion for educators (pp. 421–454). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Levine, A. T. (2000). Which way is up? Thomas S. Kuhn’s analogy to conceptual development in childhood. Science & Education, 9, 107–122.

    Article  Google Scholar 

  • Limoges, C. (1970). La sélection naturelle: étude sur la première constitution concept. Paris: Presses Universitaires de France.

    Google Scholar 

  • Limoges, C. (1972). Introduction. In C. Linné (Ed.), L’equilibre de la nature (pp. 7–22). Paris: Vrin.

    Google Scholar 

  • Marín Martínez, N. (1999). Delimitando el campo de aplicación del cambio conceptual. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 17(1), 80–92.

    Google Scholar 

  • Mayr, E. (1961). Cause and effect in biology. Science, 134(3489), 1501–1506.

    Article  Google Scholar 

  • Mayr, E. (1991). One long argument. Charles Darwin and the genesis of modern evolutionary thought. Cambridge: Harvard University Press.

    Google Scholar 

  • McLaughlin, P. (2003). What functions explain. Functional explanation and self-reproducing system. Cambridge: Cambridge University Press.

    Google Scholar 

  • Millikan, R. G. (1984). Language, thought and other biological categories. Cambridge: MIT Press.

    Google Scholar 

  • Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56, 288–302.

    Article  Google Scholar 

  • Mortimer, E. (1995). Conceptual change or conceptual profile change? Science & Education, 4(3), 23–45.

    Article  Google Scholar 

  • Neander, K. (1991a). Functions as selected effects: the conceptual analyst’s defense. Philosophy of Science, 58(2), 168–184.

    Article  Google Scholar 

  • Neander, K. (1991b). The teleological notion of “function”. Australasian Journal of Philosophy, 69(4), 454–468.

    Article  Google Scholar 

  • Olmos, A. (2017). El concepto de función y la explicación funcional de la neuroetología. Buenos Aires: Universidad de Buenos Aires.

    Google Scholar 

  • Olmos, A., & Ginnobili, S. (2016). ¿Es la biología funcional eliminable? Perspectivas – Revista do Colegiado de Filosofia da UFT, 2, 69–100.

    Google Scholar 

  • Paley, W. (1809). Natural theology. London: J. Faulder.

    Google Scholar 

  • Peterfalvi, B. (1997). L’identification d’obstacles par les élèves. ASTER, 24, 171–202.

    Article  Google Scholar 

  • Pintrich, P., Marx, R., & Boyle, R. (1993). Beyond cold conceptual change: the role of motivational beliefs and classroom contextual factors in the process of change. Review of Educational Research, 63, 167–199.

    Article  Google Scholar 

  • Posner, G., Strike, K., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211–277.

    Article  Google Scholar 

  • Pozo, J. I. (2007). Ni cambio ni conceptual: la reconstrucción del conocimiento científico como un cambio representacional. In J. Pozo & F. Flores (Eds.), Cambio conceptual y representacional en la enseñanza de la ciencia (pp. 73–90). Madrid: Antonio Machado Libros, OREALC-UNESCO/Universidad de Alcalá.

    Google Scholar 

  • Pozo, J., & Gómez Crespo, M. (2004). Aprender y enseñar ciencia. Madrid: Morata.

    Google Scholar 

  • Rosengren, K., Brem, S., Evans, E., & Sinatra, G. (Eds.). (2012). Evolution challenges. Integrating research and practice in teaching and learning about evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Ruse, M. (2000). Teleology: yesterday, today, and tomorrow? Studies in History and Philosophy of Biological and Biomedical Sciences, 31(1), 213–232.

    Article  Google Scholar 

  • Saltiel, E., & Viennot, L. (1985). What do we learn from similarities between historical ideas and the spontaneous reasoning of students? In J. P. Lijnse (Ed.), The many feces of teaching and learning mechanics (pp. 199–214). Utrecht: GIREP.

    Google Scholar 

  • Schachner, A., Zhu, L., Li, J., & Kelemen, D. (2017). Is the bias for function-based explanations culturally universal? Children from China endorse teleological explanations of natural phenomena. Journal of Experimental Child Psychology, 157, 29–48.

    Article  Google Scholar 

  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: making scientific modeling accessible and meaningful for learner. Journal of Research in Science Teaching, 46(6), 632–654.

    Article  Google Scholar 

  • Settlage, J. (1994). Conceptions of natural selection: a snapshot of the sense-making process. Journal of Research in Science Teaching, 31(5), 449–457.

    Article  Google Scholar 

  • Short, T. (2002). Darwin’s concept of final cause: neither new nor trivial. Biology and Philosophy, 17(3), 322–340.

    Article  Google Scholar 

  • Smith, M. U. (2010a). Current status of research in teaching and learning evolution: I. Philosophical/epistemological issues. Science & Education, 19(6), 523–538.

    Article  Google Scholar 

  • Smith, M. U. (2010b). Current status of research in teaching and learning evolution: II. Pedagogical issues. Science & Education, 19(6), 539–571.

    Article  Google Scholar 

  • Solbes, J. (2009). Dificultades de aprendizaje y cambio conceptual, procedimental y axiológico (I): resumen del camino avanzado. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 6(1), 2–20.

    Article  Google Scholar 

  • Walsh, D. M. (1996). Fitness and function. British Journal for the Philosophy of Science, 47, 553–574.

    Article  Google Scholar 

  • Wellman, H. (1990). The child’s theory of mind. Massachusetts: MIT Press.

    Google Scholar 

  • Werth, A., & Allchin, D. (2020). Teleology’s long shadow. Evolution: Education and Outreach, 13(4), 1–11. https://doi.org/10.1186/s12052-020-00118-8.

  • West, L. H. T., & Pines, A. L. (1983). How “rational” is rationality? Science Education, 67(1), 37–39.

    Article  Google Scholar 

  • Wouters, A. G. (2005). The function debate in philosophy. Acta Biotheoretica, 53(2), 123–151.

    Article  Google Scholar 

  • Wouters, A. G. (2007). Design explanation: determining the constraints on what can be alive. Erkenntnis, 67(1), 65–80.

    Article  Google Scholar 

  • Wright, L. (1973). Functions. Philosophical Review, 82(2), 139–168.

    Article  Google Scholar 

  • Zohar, A., & Ginossar, S. (1998). Lifting the taboo regarding teleology and anthropomorphism in biology. Education-heretical suggestions. Science Education, 82(6), 679–697.

    Article  Google Scholar 

Download references

Funding

This work has been funded by the following research projects: PUNQ, 0990/19 (Universidad Nacional de Quilmes, Argentina), UNTREF 32/19 80120190100217TF (Universidad Nacional Tres de Febrero, Argentina), PICT-2014-1741 (ANPCyT, Argentina), PICT-2014-03454 (ANPCyT, Argentina), and UBACyT 20020190201537BA, 20020190200085BA (Universidad de Buenos Aires, Argentina).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Yefrin Ariza.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginnobili, S., González Galli, L. & Ariza, Y. Do What Darwin Did. Sci & Educ 31, 597–617 (2022). https://doi.org/10.1007/s11191-020-00186-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-020-00186-8

Navigation