Skip to main content

Advertisement

Log in

Can Didactic Transposition and Popularization Explain Transformations of Genetic Knowledge from Research to Classroom?

  • Article
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

We will attempt a synthesis from various research perspectives that have analyzed the alterations that knowledge inevitably goes through while percolating into classroom activities. We will try to identify some of their causes and will illustrate them with examples in genetics. First, we will discuss some research on knowledge transformation when genetics knowledge is popularized (Staerklé and Clémence 2002), to show how knowledge is transformed in specific predictable manners as it moves from experts to general public. Then, we will draw from a large body of (French) research in didactic transposition (Chevallard 1991) in order to highlight what knowledge characteristically thrives or is lost as it percolates into school practice and learner’s knowledge. We will then draw from Huberman’s (Science Communication, 4(4), 478–510, 1983) analysis of knowledge use in schools the specificities of knowledge that teachers effectively use. All three perspectives reveal that cognitive and social environment are crucial determinants of what knowledge will be found in schools. An ecological metaphor explains how different cognitive environments from research into education favor knowledge adapted to specificities of this ecosystem. This transposition of knowledge is therefore not decay but inescapable and necessary. Ignoring this transposition has considerably reduced the effectiveness of many educational reforms. We will combine these three to propose an evolutionary perspective that could inform ways of expressing research into educational recommendations fed into the system to optimize the didactic transposition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In English, the term didactic has a quite different meaning and is not very positive in educational research, but it is the term used by Chevallard. Consequently, this article uses the abbreviation DT wherever possible.

  2. Models are abstract, simplified, representations of a system of phenomena that make its central features explicit and visible and can be used to generate explanations and predictions (Harrison and Treagust 2000)

  3. The word “noosphere” was first coined by the Russian chemist Vernadsky, then generalized by Teilhard de Chardin, from the Greek words νοῦς (mind) and σφαῖρα (sphere), and means the “sphere of the human mind,” by analogy with “atmosphere” and “biosphere.” It was later on applied to the didactics of mathematics by Chevallard to refer to education authorities who are under the influence of policymakers, such as politicians, parents, media...

  4. Chevallard uses the french word apprêter which also refers to the way a cook prepares a meal

  5. In order to stay close to Chevallard’s wording, we use in this article the original terms: exercisability, assessability, learnability, teachability.

  6. According to a metaphor used in ATD “visiting monuments,” each of these knowledge items is approached as a monument that stands on its own, that students are expected to admire and enjoy, even when they know next to nothing about its “raisons d’être,” now or in the past (Chevallard 2012).

  7. In the evolutionary biology sense: “evolutionary geneticists use fitness to predict changes in the genetic composition of populations through time” (Orr 2009).

  8. Tremplin means springboard in French

References

  • Abd-El-Khalick, F. (2011). Examining the sources for our understandings about science: enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34(3), 353–374.

    Article  Google Scholar 

  • Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers' conceptions of nature of science: a critical review of the literature. International Journal of Science Education, 22(7), 665–701.

    Article  Google Scholar 

  • Allal, L., & Lopez, L. M. (2005). L’évaluation formative de l’apprentissage: revue de publications en langue française. In OCDE (dir.). L’évaluation formative : pour un meilleur apprentissage dans les classes secondaires, Paris : OCDE. 265–299.

  • Anselme, B. (1998). Repères Pratiques. Le corps humain. Paris: Nathan.

    Google Scholar 

  • Arsac, G., Tiberghien, A., & Develay, M. (1989). La transposition didactique en mathématiques, en physique et en biologie. Lyon: IREM et LIRDIS.

    Google Scholar 

  • Astolfi, J.-P. (2005). Problèmes scientifiques et pratiques de formation. Raisons éducatives, 1, 65–81.

    Google Scholar 

  • Astolfi, J.-P., & Develay, M. (2002). La didactique des sciences (6e éd. mise à jour ed.). Paris: Presses universitaires de France.

    Google Scholar 

  • Boerwinkel, D. J., Yarden, A., & Waarlo, A. J. (2017). Reaching a consensus on the definition of genetic literacy that is required from a twenty-first-century citizen. Science & Education 26(10).

  • Boyer, R., & Tiberghien, A. (1989). Goals in physics and chemistry education as seen by teachers and high school students. International Journal of Science Education, 11(3), 297–308.

    Article  Google Scholar 

  • Bromme, R., Pieschl, S., & Stahl, E. (2008). Epistemological beliefs are standards for adaptive learning: a functional theory about epistemological beliefs and metacognition. Metacognition and Learning, 7–26.

  • Butts, C. T. (2016). Why I know but don’t believe. Science, 354(6310), 286–287.

  • Chandrashekar, J., Hoon, M. A., Ryba, N. J. P., & Zuker, C. S. (2006). The receptors and cells for mammalian taste. Nature, 444(7117), 288–294.

    Article  Google Scholar 

  • Chevallard, Y. (1991). La transposition didactique. Du savoir savant au savoir enseigné (2e éd. revue et augmentée, 1985 lre ed.). Grenoble: La Pensée sauvage.

  • Chevallard, Y. (2004). La place des mathématiques vivantes dans l’éducation secondaire : transposition didactique des mathématiques et nouvelle épistémologie scolaire. Proceedings of 3e Université d’été Animath 22–27 août 2004 Saint-Flour (Cantal).

  • Chevallard, Y. (2007). Readjusting didactics to a changing epistemology. European Educational Research Journal, 6(2), 9–27.

    Article  Google Scholar 

  • Chevallard, Y. (2011). Les problématiques de la recherche en didactique à la lumière de la TAD. Exposé réalisé le 28 janvier 2011 dans le cadre du Séminaire de l’ACADIS (ADEF, Marseille).

  • Chevallard, Y. (2012). Teaching Mathematics in tomorrow’s society: a case for an oncoming counterparadigm. 12th International Congress on Mathematical Education, 8 July – 15 July, 2012, COEX, Seoul, Korea. http://yves.chevallard.free.fr/spip/spip/IMG/pdf/RL_Chevallard.pdf

  • CIIP (2017). Sciences de la nature, cycle 3—activities reference book, CIIP. Neuchâtel: CIIP.

  • Davis, L. C. (1993). Origin of the Punnett Square. The American Biology Teacher, 55(4), 209–212.

  • Davis, E. A., Janssen, F. J. J. M., & Driel, J. H. V. (2016). Teachers and science curriculum materials: where we are and where we need to go. Studies in Science Education, 52(2), 127–160.

    Article  Google Scholar 

  • Dawkins, R. (2006). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  • Giordan, A., & De Vecchi, G. (1987). Les origines du savoir: des conceptions des apprenants aux concepts scientifiques. Paris: Delachaux et Niestlé.

    Google Scholar 

  • Giordan, A., & De Vecchi, G. (1989). L'enseignement scientifique: comment faire pour que ça marche? Nice: Z'Editions.

  • Goodyear, P. (2015). Teaching as design. HERDSA Review of Higher Education, 2, 27–50.

    Google Scholar 

  • Gould, S. J., & Vrba, E. S. (1982). Exaptation—a missing term in the science of form. Paleobiology, 8(1), 4–15.

    Article  Google Scholar 

  • Green Staerklé, E. G., & Clémence, A. (2002). De l'affiliation des souris de laboratoire au gène de la fidélité dans la vie: un exemple de transformation du savoir scientifique dans le sens commun. In C. Garnier & W. Doise (Eds.), Représentations sociales. Balisage du domaine d'études. Montréal: Éditions nouvelles, 147–155.

  • Hadji, C., Bentolila, A., Meirieu, P., & Raulin, D. (2015). L'évaluation à l'école: pour la réussite de tous les élèves. Paris: Nathan.

    Google Scholar 

  • Hänig, D. (1901). Zur Psychophysik des Geschmackssinnes. Philosophische Studien, 17, 576–623.

    Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011–1026.

    Article  Google Scholar 

  • Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Abington: Routledge.

    Google Scholar 

  • Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: foundations for the twenty-first century. Science Education, 88(1), 28–54.

  • Hoskins, S. G., Stevens, L. M., & Nehm, R. H. (2007). Selective use of the primary literature transforms the classroom into a virtual laboratory. Genetics, 176(3), 1381–1389.

    Article  Google Scholar 

  • Huberman, M. (1983). Recipes for busy kitchens. A situational analysis of routine knowledge use in schools. Science Communication, 4(4), 478–510.

    Google Scholar 

  • Kampourakis, K., Reydon, T. A. C., Patrinos, G. P., & Strasser, B. J. (2014). Genetics and society—educating scientifically literate citizens: introduction to the thematic issue. Science & Education, 23(2), 251–258.

    Article  Google Scholar 

  • Kampourakis, K., Silveira, P., & Strasser, B. J. (2016). How do preservice biology teachers explain the origin of biological traits?: a philosophical analysis. Science Education, 100(6), 1124–1149.

    Article  Google Scholar 

  • Kirschner, P. A. (1992). Epistemology, practical work and academic skills in science education. Science & Education, 1(3), 273–299.

  • Legardez, A. (2004). Enseigner l’économie: une perspective didactique. Enseigner l’économie. Paris: L’Harmattan.

    Google Scholar 

  • Lombard, F. (2017). Experiment@l-Tremplins Project. Université de Genève, Faculté des Sciences, http://experimental.unige.ch

  • Lombard, F., & Blatter, M.-C. (2009). Adapting teacher training to new evolution research approaches. In J. R. Jungck (Ed.), International Union of Biological Sciences BioEd 2009: Darwin 200 (pp. 70–78). Paris: IUBS.

    Google Scholar 

  • Marieb, E. N., Lachaîne, R., & Moussakova, L. (2000). Anatomie et physiologie humaines. Bruxelles: De Boeck Université.

    Google Scholar 

  • Millar, R. (2009). Analysing practical activities to assess and improve effectiveness: The Practical Activity Analysis Inventory (PAAI). York: Centre for Innovation and Research in Science Education, University of York.

  • Mottier Lopez, L. (2015). Évaluations formative et certificative des apprentissages: enjeux pour l'enseignement. Bruxelles: De Boeck.

    Google Scholar 

  • NRC (2003). BIO2010: Transforming Undergraduate Education for Future Research Biologists In Committee on Undergraduate Biology Education to Prepare Research Scientists for the 21st Century (Ed.). Washington, DC: National Academies Press.

  • OECD. (2014). PISA 2012 Results: What Students Know and Can Do (Volume I, Revised edition, February 2014): OECD Publishing.

  • Orr, H. A. (2009). Fitness and its role in evolutionary genetics. Nature Reviews Genetics, 10(8), 531–539.

    Article  Google Scholar 

  • Osborne, J. (2010). Arguing to learn in science: the role of collaborative, critical discourse. Science, 328(5977), 463–466.

    Article  Google Scholar 

  • Osborne, J., Simon, S., Christodoulou, A., Howell Richardson, C., & Richardson, K. (2013). Learning to argue: a study of four schools and their attempt to develop the use of argumentation as a common instructional practice and its impact on students. Journal of Research in Science Teaching, 50(3), 315–347.

    Article  Google Scholar 

  • Perrenoud, Ph. (1984). La fabrication de l’excellence scolaire: du curriculum aux pratiques d’évaluation. Vers une analyse de la réussite, de l’échec et des inégalités comme réalités construites par le système scolaire. Genève : Droz, 2e édition augmentée 1995.

  • Perilleux. (1999). SVT 3ème. Paris: Nathan.

    Google Scholar 

  • Puig, B., & Jiménez-Aleixandre, M. P. (2011). Different music to the same score: Teaching about genes, environment, and human performances socio-scientific issues in the classroom. In Sadler, Troy D. (Ed.) Socio-scientific Issues in the Classroom: Teaching, Learning and Research. (pp. 201–238). Dordrecht: Springer.

  • Roegiers, X. (2011). Combiner le complexe et le concret: le nouveau défi des curricula de l’enseignement. Le français dans le monde, Recherches et applications, 49, 36–48.

    Google Scholar 

  • Scardamalia, M., & Bereiter, C. (2002). Knowledge building. Encyclopedia of education (second edition. Ed.). New York: Macmillan Reference.

    Google Scholar 

  • Schäffler, A., & Menche, N. (2004). Anatomie, physiologie, biologie : abrégé d'enseignement pour les professions de santé. Paris: Maloine.

    Google Scholar 

  • Schwarz, C., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., et al. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654.

    Article  Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Tanner, K. D., Chatman, L., & Allen, D. (2003). Approaches to biology teaching and learning: science teaching and learning across the school-university divide—cultivating conversations through scientist-teacher partnerships. Life Sciences Education, 2(4), 195.

    Article  Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

  • Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151.

    Article  Google Scholar 

  • Waight, N., & Abd-El-Khalick, F. (2011). From scientific practice to high school science classrooms: transfer of scientific technologies and realizations of authentic inquiry. Journal of Research in Science Teaching, 48(1), 37–70.

    Article  Google Scholar 

  • Weiss, L., Monnier, A., & Strasser, B. (2013). Le travail enseignant vis-à-vis d’un savoir nouveau. Le cas de l’argumentation en français et en physique. In J.-L. Dorier, F. Leutenegger & B. Schneuwly (Eds). Didactique en construction, constructions en didactique. 181-200Bruxellles : de Boeck.

  • Wilson, D. S. (2007). Evolution for everyone: How Darwin’s theory can change the way we think about our lives. New York: Delacorte Pr.

    Google Scholar 

  • Woolston, C. (2014). Study points to press releases as sources of hype. Nature News, 516(7531), 291.

    Article  Google Scholar 

  • Yarden, A., & Carvalho, G. S. (2011). Authenticity in biology education: benefits and challenges. Journal of Biological Education, 45(3), 118–120.

    Article  Google Scholar 

  • Yarden, A., Norris, S. P., & Phillips, L. M. (2015). Adapted Primary Literature: The Use of Authentic Scientific Texts in Secondary Schools. Dordrecht: Springer.

  • Young, L., Nilsen, R., Waymire, K., MacGregor, G., & Insel, T. (1999). Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 400(6746), 766–768.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lombard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombard, F., Weiss, L. Can Didactic Transposition and Popularization Explain Transformations of Genetic Knowledge from Research to Classroom?. Sci & Educ 27, 523–545 (2018). https://doi.org/10.1007/s11191-018-9977-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-018-9977-8

Navigation