Science & Education

, 18:349 | Cite as

A Law of Physics in the Classroom: The Case of Ohm’s Law

  • Nahum KipnisEmail author


Difficulties in learning Ohm’s Law suggest a need to refocus it from the law for a part of the circuit to the law for the whole circuit. Such a revision may improve understanding of Ohm’s Law and its practical applications. This suggestion comes from an analysis of the history of the law’s discovery and its teaching. The historical materials this paper provides can also help teacher to improve students’ insights into the nature of science.


Internal Resistance Electromotive Force Electromagnetic Effect Nichrome Wire Magnetic Needle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks the administration of the Deutsches Museum Library for support that allowed him to study Ohm’s manuscripts, Dr. Jürgen Teichmann for valuable discussions and various help, my wife Berta for help with drawings, and the reviewers for useful comments and suggestions.


  1. Académie des Sciences de Paris (1910-1922) Procès-verbaux des séances de l’Academie, etc., 10 vols, l’Observatoire d’Abbadia, Hendaye (Basses-Pyrénées), vol 9 (1828/31), vol 10 (1832/35)Google Scholar
  2. Ampère A (1820) ‘Mémoire présenté à l’Académie royale des Sciences, le 2 octobre 1820, où se trouve compris le résumé de ce qui avait été lu à la meme Académie les 18 et 25 septembre 1820, sur les effets des courans électriques. Annales des Chimie et de Physique 15:59–76Google Scholar
  3. Arons A (1999) Inductive versus deductive teaching of concepts and theories: utilizing the historical framework. In: Proceedings of history, philosophy & science teaching conference, University of Calgary, pp 49–63Google Scholar
  4. Barlow P (1825) On the laws of electro-magnetic action, as depending on the length and dimensions of the conducting wire, etc. Edinb Philos J 12:105–114Google Scholar
  5. Bauman RP (1980) Hydraulic models for electrical circuit elements. Phys Teacher 18(5):378–380CrossRefGoogle Scholar
  6. Becquerel AC (1823a) Du développement de l’électricité par le contact de deux portions d’une même metal, dans un etat suffisamment inégal de temperature, etc. Annales de Chimie et de Physique 23:135–154 Google Scholar
  7. Becquerel AC (1823b) Des effets électriques qui se development pendant diverses actions chimiques. Annales de Chimie et de Physique 23:244–258 Google Scholar
  8. Becquerel AC (1826) Du pouvoir conducteur de l’électricité dans les métaux, et de l’intensité de la force électrodynamique, etc. Annales de Chimie et de Physique 32:420–430Google Scholar
  9. Beiser A, Krauskopf K (1964) Introduction to physics and chemistry. McGraw-Hill Books, New YorkGoogle Scholar
  10. Boutet de Monvel B (1863) Cours de physique. L. Hachette, Paris, pp 515–516Google Scholar
  11. Buster S (1995) Using the historical approach to avoid misconceptions in student’s understanding of electricity. In: Finley F et al (eds) Proceedings of the third international history, philosophy & science teaching conference. University of Minnesota, Minneapolis, MN, pp 170–175Google Scholar
  12. Campbell N (1957) Foundations of science. Dover Publications, New YorkGoogle Scholar
  13. Cavendish H (1771) An attempt to explain some of the principal phenomena of electricity, by means of an elastic fluid. Philos Trans R Soc Lond 61:584–677CrossRefGoogle Scholar
  14. Chappuis J, Berget A (1891) Leçons de physique générale, 3 vols. Gauthier-Villars, Paris, Version 2, p 147Google Scholar
  15. Children JG (1809) An account of some experiments performed with a view to ascertain the most advantageous method of constructing the voltaic apparatus for the purposes of chemical research. J Natur Philos, Chem Arts 24:150–155 Google Scholar
  16. Christie SH (1833) The Bakerian lecture.—Experimental determination of the laws of magneto-electric induction in different masses of the same metal, and of its intensity in different metals. Philos Trans R Soc Lond 123:95–142CrossRefGoogle Scholar
  17. Cohen R (1976) Physical science. Holt, Rinehart & Winston, New York et alGoogle Scholar
  18. Cohen R et al (1983) Potential difference and current in simple electric circuits: a study of students’ concepts. Am J Phys 51(5):407–412CrossRefGoogle Scholar
  19. Cumming J (1822a) On the connection of galvanism and magnetism. Trans Camb Philos Soc 1:269–279Google Scholar
  20. Cumming J (1822b) The application of magnetism as a measure of electricity. Trans Camb Philos Soc 1:281–286Google Scholar
  21. Cuthbertson J (1804) Letter communicating an important and curious distinguishing property between the galvanic and electric fluids. J Nat Philos Chem Arts 8(97–8):205–206Google Scholar
  22. Daguin P (1863) Cours de physique élémentaire. E. Privat, Toulouse; F. Tandu, ParisGoogle Scholar
  23. Davy H (1821a) On the magnetic phenomena produced by electricity. Philos Trans R Soc Lond 111:7–19CrossRefGoogle Scholar
  24. Davy H (1821b) Further researches on the magnetic phenomena produced by electricity; with some new experiments on the properties of electrified bodies in their relations to conducting powers and temperature. Philos Trans R Soc Lond 111:425–439CrossRefGoogle Scholar
  25. Driver R et al (1994) Making sense of secondary science: research into children’s ideas. Routledge, LondonGoogle Scholar
  26. Duff A (1925) College physics. Longmans, Green and Co, New YorkGoogle Scholar
  27. Dupin J, Johsua S (1989) Analogies and “modeling analogies” in teaching: some examples in basic electricity. Sci Edu 73(2):207–224CrossRefGoogle Scholar
  28. Eldridge J (1940) College physics, 2nd edn. Wiley & Sons, New YorkGoogle Scholar
  29. Fechner GT (1831) Massbestimmungen über die galvanische Kette, F.A. Brockhaus, LeipzigGoogle Scholar
  30. Gavarret J (1858) Traité d’électricité, 2 vols. Victor Masson, Paris, vol 2Google Scholar
  31. Giere R (1988) Explaining science: a cognitive approach. University of Chicago Press, ChicagoGoogle Scholar
  32. Giere R (1999) Science without laws. University of Chicago Press, Chicago, p 90Google Scholar
  33. Gilbert LW (1820) Untersuchungen über die Einwirkungdes geschlossenen galvanische-lectrischen Kreises auf die Magnetnadel. Annalen der Physik 66:331–391Google Scholar
  34. Halliday D, Resnick R (1978) Physics, parts 1 & 2 combined, 3rd edn. Wiley, New York, etc., p 682Google Scholar
  35. Harvard Project Physics (1975) Project physics text. Holt, Rinehart and Winston, New York, Unit 4, p 55Google Scholar
  36. Iona M (1979) Teaching electrical resistance. Phys Teacher 17(5):299–305CrossRefGoogle Scholar
  37. Jacobi MH (1837) On the Application of Electro-Magnetism to the Movement of Machines. In: Taylor R (ed) Scientific Memoirs, vol 1. Taylor, London, pp 503–531 Google Scholar
  38. Jacobi MH (1839) Ueber das chemische und das magnetische-Galvanometer. Annalen der Physik 48:26–57Google Scholar
  39. Jamin J (1866) Cours de Physique de l’École Polytechnique, 3 vols. Gautiers-Villars, Paris, vol 3, pp 106–109Google Scholar
  40. Johnstone A, Mughol A, (1978) The concept of electrical resistance. Phys Edu 13(1):46–49CrossRefGoogle Scholar
  41. Kenworthy R (1961) College physics. F. Davis, PhiladelphiaGoogle Scholar
  42. Kimball A (1917) A college textbook of physics, 2nd edn. Holt & Co, New YorkGoogle Scholar
  43. Kipnis N (1992) Rediscovering Optics. BENA Press, Minneapolis, MNGoogle Scholar
  44. Kipnis N (1996) The ‘historical-investigative’ approach to teaching science. Sci & Edu 5:277–292CrossRefGoogle Scholar
  45. Kipnis N (2005) Scientific analogies and their use in teaching science. Sci & Edu 14(1):199–233CrossRefGoogle Scholar
  46. Kipnis N (2007) Discovery in science and in teaching science. Sci & Edu 16(9–10):883–920CrossRefGoogle Scholar
  47. Kohlrausch R (1849) Die electroscopische Eigenschaften der geschlossenen galvanischen Kette. Annalen der Physik 78(1):1–21Google Scholar
  48. Kuhn T (1974) Second thoughts on paradigms. In: Suppe F (ed) The structure of scientific theories. University of Illinois Press, Urbana, ILGoogle Scholar
  49. Lamé G (1840) Cours de Physique de l’École Polytechnique, 3 vols, 2nd edn. Bachelier, Paris, vol 3, pp 325, 332Google Scholar
  50. Lawrenz F, Kipnis N (1990) Hands-on history of physics. J Sci Teacher Edu 1(3):54–59CrossRefGoogle Scholar
  51. Lenz HFE (1835) Ueber die Leitingsfähigkeit der Metalle für die Elektricität bei verschiedenen Temperaturen. Annalen der Physik 34:418–437 Google Scholar
  52. Lenz HFE (1837) The Laws of the Conducting Powers of Wires of different Lengths and Diameters for Electricity. In: Taylor R (ed) Scientific Memoirs, selected from the Transactions of Foreign Academies of Science and Learned Societies, and from Foreign Journals, vol 1. Taylor, London, pp 311–324 Google Scholar
  53. Matthews M (1994) Science teaching: the role of history and philosophy of science. Routledge, LondonGoogle Scholar
  54. McCormick WW (1965) Fundamentals of college physics. Macmillan, New YorkGoogle Scholar
  55. McDermott L, Shaffer P (1994) Research as a guide for curriculum development: an example from introductory electricity. Part I: Investigation of students’ understanding. Am J Phys 60(11):994–1003CrossRefGoogle Scholar
  56. McKnight J (1967) Laboratory notebooks of G. S. Ohm: a case study in experimental method. Am J Phys 35:110–114CrossRefGoogle Scholar
  57. Monk M, Osborne J (1997) Placing the history and philosophy of science on the curriculum: a model for the development of pedagogy. Sci Edu 81:405–424CrossRefGoogle Scholar
  58. Müller J (1845) Lehrbuch der Physik und Meteorologie,...der Bearbeitung von Pouillet’s Lehrbuch der Physik, 2 vols, 2nd edn. F. Biweg & Son, Braunschweig, vol 2Google Scholar
  59. Oersted HC (1823a) Nouvelles expériences de M. Seebeck sur les actions électro-magnétiques. Annales de Chimie et de Physique 22:199–201Google Scholar
  60. Oersted HC (1823b) Sue le Multiplicateur électro-magnetique de M. Schweigger, et sur quelques applications qu’on en a faites. Annales de Chimie et de Physique 22:358–365Google Scholar
  61. Ohm GS (1825) Forläufige Anzeige des Gesetzes, nach welchem Metalle die Contactelectricität leiten. Annalen der Physik 4:79–88Google Scholar
  62. Ohm GS (1826a) Bestimmung des Gesetzes nach welchem Metalle die Contactelectrizität leiten, etc. Jahrbuch der Chemie und Physik 44:137–166Google Scholar
  63. Ohm GS (1826b) Versuch eine Theorie der durch galvanische Kräfte hervorgebrachten electroscopischen Erscheinungen. Annalen der Physik 6:459–469; 7:45–54, 117–118Google Scholar
  64. Ohm GS (1825–1826), Laboratory Journal for 1825–1826, Ohm Collection, Deutsches Museum Library, Item. 904. Pages in this manuscript are not numberedGoogle Scholar
  65. Ohm GS (1827) Die galvanische Kette mathematisch bearbeitet. T.H. Riemann, Berlin; Facsimile (1969) Culture et civilization, Bruxelles. See an English translation: Ohm GS (1891) The galvanic circuit investigated mathematically. D. van Nostrand Co., New York; Facsimile (1969) Kraus Reprint Co., New YorkGoogle Scholar
  66. Ohm GS (1841) The Galvanic Circuit investigated Mathematically. In: Taylor R (ed) Scientific Memoirs, vol 2. Taylor, London, pp 401–506 Google Scholar
  67. Péclet E (1838) Traité élémentaire de physique, 3 vols, 3rd edn. Hachette, Paris, vol 2Google Scholar
  68. Péclet E (1845) Lettre touchant un passage de la dernière édition du Traité de Physique de M. Pouillet. Comptes rendus hebdomadaires des séances de l’Académie des Sciences 20:54–60Google Scholar
  69. Peschel C (1846) Elements of physics, 3 vols, transl. from the German, Longman et al., London, vol 3, p 106Google Scholar
  70. Pouillet CSM (1832) Ėlémens de physique expérimentale et de météorology, 2nd edn. chez Béchet jeune, Paris, vol 1, pp 316–318Google Scholar
  71. Pouillet CSM (1837a) Mémoire sur la pile de Volta et sur la loi génerale de l’intensité que prennent les courants, soit qu’ils proviennent d’un seul élement, soit qu’ils proviennent d’une pile à grande ou à petite tension. Comptes rendus hebdomadaires des séances de l’Académie des Sciences 4:267–279Google Scholar
  72. Pouillet CSM (1837b) Ueber die Volta’sche Säule und über das allgemeine Gesetz für die Intensität der Ströme, etc. Annalen der Physik 42:281–296 (esp note p 281)Google Scholar
  73. Pourprix B (1989) La mathématisation des phénomènes galvaniques par G.S. Ohm (1825–1827). Revue d’Histoire des Sciences et de leurs Applications 42:139–154CrossRefGoogle Scholar
  74. Pluvinage Ph (1976) Quelques épisodes de la carrière d’un grand phycisien Franc-Comtois: Claude-Servais-Mathias Pouillet (1790–1868). Mémoires de la Societé d’émulation du Doubs, pp 59–77Google Scholar
  75. Ritter JW (1805) Neue Versuche und Bemerkungen über den Galvanismus. Zweiter Brief. Annalen der Physik 19(1):17–44Google Scholar
  76. Savary F (1823) Extrait d’ un mémoire lu à l’Academie des Sciences, le 3 février 1823. Annales de Chimie et de Physique 22:91–100 Google Scholar
  77. Schagrin ML (1963) Resistance to Ohm’s law. Am J Phys 31:536–547CrossRefGoogle Scholar
  78. Sears F, Zemansky M (1952) College physics. Complete edition, 2nd edn. Addison-Wesley, Reading, MAGoogle Scholar
  79. Shaffer P, McDermott L (1992) Research as a guide for curriculum development: an example from introductory electricity. Part II: design of instructional strategies. Am J Phys 60(11):1003–1013CrossRefGoogle Scholar
  80. Shipstone (1984) A study of children's understanding of electricity in simple DC circuits. Eur J Sci Educ 6(2):185–198Google Scholar
  81. Steinheil CA (1839) Upon Telegraphic communication, especially by means of Galvanism.In: Sturgeon W (ed) The Annals of Electricity, Magnetism, & Chemistry, vol 3. Sherwood, Gilbert, & Piper, London, pp 439–452, 509–520 Google Scholar
  82. Stocklmayer SM, Treagust DF (1994) A historical analysis of electric currents in textbooks: a century of influence on physics education. Sci & Edu 3:131–154CrossRefGoogle Scholar
  83. Swartz N (1985) The Concept of Physical Law. Cambridge University Press, Cambridge Google Scholar
  84. Swartz N (1995) A neo-Humean perspective: laws as regularities. In: Weinert F (ed) Laws of nature − essays on the philosophical, scientific and historical dimensions. Walter de Gruyter. New York, pp 67–91Google Scholar
  85. Teichmann J (1976) 150 Jahre Ohmsches Gesetz − 1826 bis 1976. Electrotechnische Zeitswchrift A 97(10):594–600Google Scholar
  86. Teichmann J (2001) Volta and the quantitative conceptualization of electricity: from electrical capacity to the preconception of Ohm’s law. In: Bevilacqua F, Fregonese L (eds) Nuova Voltiana: studies on Volta and his times, vol 3. Università degli Studi, Pavia; Editore Ulrico Hoepli, Milano, pp 53–80Google Scholar
  87. Verdet É (1868) Cours de Physique professé à l’École Polytechnique, 2 vols, V. Masson, Paris, vol 1, pp 373, 404Google Scholar
  88. Viard J, Khantine-Langlois F (2001) The concept of electrical resistance: how Cassirer’s philosophy, and the early developments of electric circuit theory, allow a better understanding of students’ learning difficulties. Sci & Edu 10:267–286CrossRefGoogle Scholar
  89. Volta A (1779) Sur la capacité des conducteurs électriques & sur la commotion égale à celle de la bouteille de Leyde que peut donner un simple conducteur. Observations sur la physique 13:249–277Google Scholar
  90. Volta A (1800) On the electricity excited by the mere contact of conducting substances of different kinds. Philos Mag 7:289–311Google Scholar
  91. Volta A (1801) De l’électricité dite galvanique. Annals de Chimie 40:225–256Google Scholar
  92. Volta A (1802) Au Redacteurs de la Bibliothéque Britannique. Bibliothéque Britannique 19:274–289, 339–350Google Scholar
  93. Vorsselman P de Heer (1839) Theorie der elektrischen Telegraphie, etc. Annalen der Physik 46:513–537 Google Scholar
  94. Weidner R, Sells A (1965) Elementary classical physics, Version 2, Allyn & Bacon, BostonGoogle Scholar
  95. Wheatstone CH (1843) Bakerian Lecture.- An Account of several new Instruments and Processes for determining the Constants of a Voltaic Circuit. Philos Trans R Soc Lond 133:303–327 Google Scholar
  96. Wilkinson C (1804) Facts upon which deductions are made to shew the law of Galvanism. J Nat Philos 7:206–209Google Scholar
  97. Winter H (1944) The reception of Ohm’s electrical researches by his contemporaries. Philos Mag 35(245):371–386Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.MinneapolisUSA

Personalised recommendations