Skip to main content

Advertisement

Log in

Energy Flux at the Substrate During Dual Magnetron Sputtering of TiAlN Coating

  • Published:
Russian Physics Journal Aims and scope

The paper suggests dependences of the energy flux and specific energy onto the substrate on the pulse duty cycle during the dual magnetron-sputter deposition of the TiAlN coating. It is shown that the energy flux at the substrate increases by 20–30% with decreasing duty cycle from 40 to 6% at the constant average discharge power. Together with a decrease in the deposition rate at the high pulsed power, the specific energy grows sixfold on the substrate during the coating growth. The duty cycle can be thus considered as a way to control the energy flux onto the deposited coating, which affects its structure and properties. It is found that the TiAlN coating obtained at low duty cycle and high energy flux onto the substrate, possesses the high hardness and wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soham Das, Spandan Guha, Ranjan Ghadai, and Bibhu Prasad Swain, Mater. Chem. Phys., 258, 123866 (2021).

    Article  Google Scholar 

  2. Wei Yongqiang, Zong Xiaoya, Wu Zhongzhen, et al., Surf. Coat. Technol., 229, 191−196 (2013).

    Article  Google Scholar 

  3. Mohamed Ben Hassine, Hans-Olof Andrén, Anand H. S. Iyer, et al., Surf. Coat. Technol., 421, 127361 (2021).

  4. S. Gillesa, K. Bourhila, S. Ikeda, et al., Surf. Coat. Technol., 93–95, 285–290 (1997).

    Article  Google Scholar 

  5. S. PalDey and S. C. Deevi, Mater. Sci. Eng.: A, 342, No. 1–2, 58–79 (2003). DOI: https://doi.org/10.1016/S0921-5093(02)00259-9.

  6. H. Klostermann, B. Böcher, F. Fietzke, et al., Surf. Coat. Technol., 200, 760–764 (2005).

    Article  Google Scholar 

  7. K. Kutschej, P. H. Mayrhofer, M. Kathrein, et al., Surf. Coat. Technol., 200, No. 7, 2358−2365 (2005).

    Article  Google Scholar 

  8. A. Anders, Surf. Coat. Technol., 257, 308–325 (2014).

    Article  Google Scholar 

  9. M-R. Alhafian, J-B. Chemin, Y. Fleming, et al., Surf. Coat. Technol., 423, 127529 (2021).

    Article  Google Scholar 

  10. D. A. Karpov, Surf. Coat. Technol., 96, 22–33 (1997).

    Article  Google Scholar 

  11. Yanhui Zhao, Guoqiang Lin, Jinquan Xiao, et al., Appl. Surf. Sci., 257, No. 13, 5694–5697 (2011).

    Article  ADS  Google Scholar 

  12. J. Alami, Z. Maric, H. Busch, et al., Surf. Coat. Technol., 255, 43–51 (2014).

    Article  Google Scholar 

  13. K. Chakrabarti, J. J. Jeong, S. K. Hwang, et al., Thin Solid Films, 406, 159–163 (2002).

    Article  ADS  Google Scholar 

  14. M. Keunecke, C. Stein, K. Bewilogua, et al., Surf. Coat. Technol., 205, 1273–1278 (2010).

    Article  Google Scholar 

  15. H. C. Barshilia, K. Yogesh, and K. S. Rajam, Vacuum, 83, 427–434 (2009).

    Article  ADS  Google Scholar 

  16. V. O. Oskirko, A. N., Zakharov A. P., Pavlov et al., J. Phys.: Conf. Ser., 1393, 012051 (2019).

  17. G. Kim, S. Lee, and J. Hahn, Surf. Coat. Technol., 193, No. 1, 213–218 (2005).

    Article  Google Scholar 

  18. H. Deutsch, H. Kersten, and A. Rutscher, Contrib. Plasma Phys., 29, No. 3, 263–284 (1989).

    Article  ADS  Google Scholar 

  19. I. Hussla, K., Enke H. Grundwald, et al., J. Phys. D. Appl. Phys., 20, 880–896 (1987).

  20. V. O. Oskirko, A. N. Zakharov, V. A. Semenov, et al., Vacuum, 200, 111026 (2022).

    Article  ADS  Google Scholar 

  21. S. Ekpe and K. Dew, J. Vacuum Sci. Technol. A, 20, 1877 (2002).

    Article  ADS  Google Scholar 

  22. W. C. Oliver and G. M. Pharr, J. Mater. Res., 19, No. 1, 3–20 (2004).

    Article  ADS  Google Scholar 

  23. J. Musil, M. Jaroš, R. Čerstvý, and S. Haviar, J. Vac. Sci. Technol. A, 35, 020601 (2017).

    Article  Google Scholar 

  24. F. A. D’yachenko, “Physical and Mechanical Properties of Three- and Four-Component Titanium-Based Alloys Synthesized on TiNi Substrate by Electron Beam Treatment,” Candidate’s Dissertation in Engineering [in Russian], Tomsk (2022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Grenadyorov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 31–37, November, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grenadyorov, A.S., Zakharov, A.N., Oskirko, V.O. et al. Energy Flux at the Substrate During Dual Magnetron Sputtering of TiAlN Coating. Russ Phys J 65, 1825–1831 (2023). https://doi.org/10.1007/s11182-023-02837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02837-z

Keywords

Navigation