Skip to main content
Log in

Effect of bias voltage on the microstructure and hardness of Ti-Si-N films deposited by using high-power impulse magnetron sputtering

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The huge potential of High-power impulse magnetron sputtering (HIPIMS) to improve the properties of deposited coatings has been verified. In this study, Ti-Si-N coatings were deposited on Si (111), glass and cemented carbide substrates by using HIPIMS. The influences of the peak voltage, duty cycle and total gas pressure on the transient peak current of the Ti90Si10 target was investigated in detailed. The (200) diffraction intensity decreased with increasing bias voltage from -50 V to -400 V. The hardness of the Ti-Si-N coatings deposited at various bias voltages and the internal stress at different bias voltages were studied. The results indicate that HIPIMS technology can considerably improve the mechanical capacity of the Ti-Si-N coatings, possibly due to the combined protection of the increased adhesive force with the substrate and the relatively high hardness, which are caused by densification and dislocation strengthening effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. Mayrhofer, F. Kunc, J. Musil and C. Mitterer, Thin Solid Films 415, 151 (2002).

    Article  ADS  Google Scholar 

  2. S. Adhikari, A. M. M. Omer, S. Adhikary, M. Rusop, H. Uchida and M. Umeno, Diamond Relat. Mater. 15, 913 (2006).

    Article  ADS  Google Scholar 

  3. U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian and J. T. Gudmundsson, Thin Solid Films 513, 1 (2006).

    Article  ADS  Google Scholar 

  4. A. P. Ehiasarian, W. D. Münz, L. Hultman, U. Helmersson and I. Petrov, Surf. Coat. Technol. 163, 267 (2003).

    Article  Google Scholar 

  5. J. Bohlmark, M. Lattemann, J. T. Gudmundsson, A. P. Ehiasarian, Y. Aranda Gonzalvo, N. Brenning and U. Helmersson, Thin Solid Films 515, 1522 (2006).

    Article  ADS  Google Scholar 

  6. K. Sarakinos, J. Alami and S. Konstantinidis, Surf. Coat. Technol. 204, 1661 (2010).

    Article  Google Scholar 

  7. M. Aiempanakit, T. Kubart, P. Larsson, K. Sarakinos, J. Jensen and U. Helmersson, Thin Solid Films 519, 7779 (2011).

    Article  ADS  Google Scholar 

  8. A. P. Ehiasarian, Research Signpost, edited by R. Wei (Trivandrum, India, 2008), p. 86.

  9. W. D. Münz, A. P. Ehiasarian and P. Eh. Hovsepian, EP20020011204, 21 May 2001.

  10. K. Gołombeka, L. A. Dobrzanskia and M. Sokovi, J. Mater. Process. Technol. 157, 341 (2004).

    Google Scholar 

  11. H. Watanabe, Y. Sato, C. Y. Nie, A. Ando, S. Ohtani and N. Iwamoto, Surf. Coat. Technol. 169, 452 (2003).

    Article  Google Scholar 

  12. A. Yazdani, M. Soltanieh, H. Aghajani and S. Rastegari, Vacuum 86, 131 (2011).

    Article  ADS  Google Scholar 

  13. S. Veprek, R. F. Zhang, M. G. J. Veprek-Heijman, S. H. Sheng and A. S. Argon, Surf. Coat. Technol. 204, 1898 (2010).

    Article  Google Scholar 

  14. A. Bubenzer, B. Dischler, G. Brandt and P. Koidl, J. Appl. Phys. 54, 4590 (1983).

    Article  ADS  Google Scholar 

  15. X. F Tang, F. Luo and F. Ou, Appl. Surf. Sci. 259, 448 (2012).

    Article  ADS  Google Scholar 

  16. Y. J. Zhang, Y. Z. Yang and Y. H. Zhai, Appl. Surf. Sci. 258, 6897 (2012).

    Article  ADS  Google Scholar 

  17. V. N. Zhitormirsky, L. Rapoport and R. L. Boxman, Surf. Coat. Technol. 133, 114 (2000).

    Article  Google Scholar 

  18. S. H. Kim, J. K. Kim and K. H. Kim, Thin Solid Films 420, 360 (2002).

    Article  ADS  Google Scholar 

  19. Z. Y. Wang, X. Sheng and X. C. Liu, Acta. Metall. Sin. 5, 540 (2014).

    Google Scholar 

  20. J. Pelleg, L. Z. Zevin, S. Lungo and N. Croitoru, Thin Solid Films 197, 117 (1991).

    Article  ADS  Google Scholar 

  21. Z. T. Yang, B. Yang, L. P. Guo and D. J. Fu, J. Appl. Phys. 473, 437 (2009).

    Google Scholar 

  22. J. F. Moulder, W. F. Sticke, P. E. Sobol and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation Eden Prairie, 1992).

    Google Scholar 

  23. C. A. Davis, Thin Solid Films 226, 1692 (1993).

    Article  Google Scholar 

  24. M. Lattermann, U. Helmersson and J. E. Greene, Thin Solid Films 518, 5978 (2010).

    Article  ADS  Google Scholar 

  25. Y. P. Sharkeev, B. P. Gritsenko, S. V. Fortuna and A. J Perry, Vacuum 52, 247 (1999).

    Article  Google Scholar 

  26. J. M. Poitevin, G. Lemperiere and J. Tardy, Thin Solid Films 97, 69 (1982).

    Article  ADS  Google Scholar 

  27. Q. H. Kong, Li Ji, H. X. Li, X. H. Liu and H. D. Zhou, Mater. Sci. Eng. B 176, 850 (2011).

    Article  Google Scholar 

  28. J. W. Lee, S. K. Tien and Y. C. Kuo, Thin Solid Films 494, 161 (2006).

    Article  ADS  Google Scholar 

  29. S. Hao, S. B. Delley, S. Veprek and C. Stampfl, Phys. Rev. Lett. 97, 086102 (2006).

    Article  ADS  Google Scholar 

  30. S. Hao, B. Delley and C. Stampfl, Phys. Rev. B 74, 035402 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChangWei Zou or QiMin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Zou, C., Wang, Q. et al. Effect of bias voltage on the microstructure and hardness of Ti-Si-N films deposited by using high-power impulse magnetron sputtering. Journal of the Korean Physical Society 68, 351–356 (2016). https://doi.org/10.3938/jkps.68.351

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.351

Keywords

Navigation