Skip to main content
Log in

Series-Parallel Equivalent Circuit of Heterostructure with Quantum Wells

  • Published:
Russian Physics Journal Aims and scope

Based on the topology of a heterostructure with quantum wells, its equivalent circuit is proposed in the form of a series connection of parallel RC-circuits describing the electrophysical properties of barrier layers and quantum wells. The scheme takes into account the properties of the process of delivery of carriers to the wells, the capture of charge carriers by them, their radiative recombination, and also the through current through the heterostructure. Expressions are obtained for finding the capacitance and resistance of a serial RC equivalent circuit, as well as expressions for calculating the active and reactive elements of the equivalent circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zh. I. Alferov, Fiz. Tekh. Poluprovodn., 32, No. 3, 3–18 (1998).

    Google Scholar 

  2. F. E. Shubert, Light Emitting Diodes [in Russian], Fizmatlit, Moscow (2008).

    Google Scholar 

  3. J. M. Martines-Duart, R. J. Martin-Palma, F. Agullo-Rueda, The World of Materials and Technologies. Nanotechnologies for Micro- and Optoelectronics [Russian translation], Tekhnosfera, Moscow (2007).

  4. Nanotechnology. Physics, Processes, Diagnostics, Devices [in Russian], ed. by prof. V. V. Luchinina and prof. Yu. M. Tairova, Fizmatlit, Moscow (2006).

  5. V. P. Dragunov, I. G. Neizvestny, and V. A. Gridchin, Fundamentals of Nanoelectronics [in Russian], Universitet. Kniga, Logos, Moscow (2006).

  6. N. V. Zernov and V. G. Karpov, Theory of Radio Circuits [in Russian], Energiya, Moscow, Leningrad (1965).

  7. H.JJ. De Man, IEEE Trans. Electron. Devices, ED-17, 1087–1088 (1970).

  8. K. Tettelbach–Helmrich, Semicond. Sci. Technol., 8, 1372–1376 (1993).

  9. T. Clarysse and W. Vandervorst, J. Vac. Sci. Technol. B, 18, 369–380 (2000).

    Article  Google Scholar 

  10. V. I. Zubkov, Diagnostics of Semiconductor Heterostructures by Admittance Spectroscopy [in Russian], Elmor, St. Petersburg (2007).

    Google Scholar 

  11. O. A. Soltanovich and E. B. Yakimov, Fiz. Tekh. Poluprovodn., 46, No. 12, 1597–1603 (2012).

    Google Scholar 

  12. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, et al., Fiz. Tekh. Poluprovodn., 47, No. 1, 129–136 (2013).

    Google Scholar 

  13. O. A. Soltanovich, N. M. Shmidt, and E. B. Yakimov, Fiz. Tekh. Poluprovodn., 45, No. 2, 226–229 (2011).

    Google Scholar 

  14. I. A. Supredyakina, K. K. Abgaryan, and D. I. Bazhanov, Fiz. Tekh. Poluprovodn., 47, No. 12, 1647–1651 (2013).

    Google Scholar 

  15. S. Zi, Physics of Semiconductor Devices, Book 2 [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  16. K. Seken and M. Tompson, Charge Transfer Devices [Russian translation], Mir, Moscow (1978).

    Google Scholar 

  17. V. I. Zubkov, Fiz. Tekh. Poluprovodn., 41, No. 12, 331–337 (2007).

    Google Scholar 

  18. Sa J. Dan, TIIEE, 55, No.5, 61–94 (1967).

    Google Scholar 

  19. R. S. Nakhmanson, Sol. Stat. Electron., 19, No. 9, 745–758 (1976).

    Article  ADS  Google Scholar 

  20. Van der Zil, Sources, Description, Measurement [Russian translation], Sov. Radio, Moscow (1973).

    Google Scholar 

  21. V. N. Davydov and D. A. Novikov, Russ. Phys. J., 58, No. 7, 987–995 (2015).

    Article  Google Scholar 

  22. V. N. Davydov and A. N. Morgunov, Russ. Phys. J., 58, No. 11, 1619–1626 (2016).

    Article  Google Scholar 

  23. V. N. Davydov, S. V. Kharitonov, N. E. Lugina, and K. P. Melnik, Semiconductors, 51, No. 9, 1174–1179 (2017).

    Article  ADS  Google Scholar 

  24. P. W. M. Bloom, С. Smit, J. E.M. Haverkort, and J. H. Wolter , Phys. Rev. B, 47, 2072 (1992).

    Article  ADS  Google Scholar 

  25. V. N. Abakumov, V. I. Perel, and I. V. Yassievich, Non-Radiative Recombination in Semiconductors [in Russian], Izd. “Peterburg. Inst. Yadern. Fiz. RAN”, St. Petersburg (1997).

  26. Karol Ka’lma, Theoretical Study of Carrier Capture into Semiconductor Quantum Wells, PhD Thesis, Slovak Academy of Science, 842 39 Slovakia, Bratislava (1997).

  27. V. Ya. Aleshin and P. V. Gavrilenko, Fiz. Tekh. Poluprovodn., 51, No. 11, 1498–1502 (2017).

  28. A. A. Bloshkin, A. I. Yakimov, and A. V. Dvurechenskii, Fiz. Tekh. Poluprovodn., 48, No. 8, 1065–1069 (2014).

    Google Scholar 

  29. Yu. Pozhela, K. Pozhela, and V. S. Mikhrin, Fiz. Tekh. Poluprovodn., 43, No. 12, 1634–1640 (2009).

    Google Scholar 

  30. Z. N. Sokolova, K. V. Bakhvalov, and L. V. Asryan, Fiz. Tekh. Poluprovodn., 50, No. 5, 679–682 (2016).

    Google Scholar 

  31. V. N. Davydov and O. A. Karankevich, Russ. Phys. J., 61, No. 2, 223–231 (2018).

    Article  Google Scholar 

  32. Z. N. Sokolova, I. S. Tarasov, and L. V. Asryan, Fiz. Tekh. Poluprovodn., 45, No. 11, 1553–1559 (2011).

    Google Scholar 

  33. L. V. Danilov and G. G. Zegrya, Fiz. Tekh. Poluprovodn., 47, No. 10, 1347–1355 (2013).

    Google Scholar 

  34. V. N. Davydov, A. N. Lapin, and O. F. Zadorozhny, Russ. Phys. J., 64, No. 3, 534–538 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Davydov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 133–142, April, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, V.N., Zadorozhny, O.F. Series-Parallel Equivalent Circuit of Heterostructure with Quantum Wells. Russ Phys J 65, 732–743 (2022). https://doi.org/10.1007/s11182-022-02691-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02691-5

Keywords

Navigation