Skip to main content
Log in

Influence of the Grain Size of ZrO2(Y2O3) Ceramics on the Hardness, Fracture Toughness and Formation of a Transformation-Deformation Relief in the Indentation Zone

  • Published:
Russian Physics Journal Aims and scope

The hardness and fracture toughness of ZrO2 – 5.5 wt.% Y2O3 ceramics with a grain size of 0.2, 0.5, 0.9, and 1.55 μm are determined by indentation methods. The deformation relief in the indentation zone and near a crack propagating from the corner of the indentation mark in the ZrO2–Y2O3 ceramics with differing grain sizes is studied by atomic force microscopy. It is shown that the grain size of the ZrO2(Y2O3) ceramics has a significant effect on its hardness, fracture toughness and deformation relief formed during indentation. It is found out that the larger the grain size the lower would be the hardness of the material and the higher its fracture toughness. It is shown that with an increase in the grain size, the average height of the deformation relief increases from 20 to 140 nm. In the ceramic specimens with a grain size of 0.5 μm or more, zones with a changed phase contrast are formed in the emerging deformation relief upon indentation. No such zones are observed in the ceramic specimens with a grain size of 0.2 μm. The width of the zone with a changed phase contrast, measured near the indentation mark corner in the crack propagation region, increases from 0.6 to 1.7 μm, which correlates with the grain size of the experimental ceramics. On the other hand, a quantitative analysis showed that the proportion of relief with a changed phase contrast increases from 11% in the ceramics with a grain size of 0.5 μm to 27% in the ceramics with a grain size of 1.55 μm, which is due a transformation occurring in the ceramics during indentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhang and B. R. Lawn, J. Dent. Res., 97, 140 (2018).

    Article  Google Scholar 

  2. I. Denry, M. Abdelaal, D. V. Dawson, et al., J. Prosthetic Dentistry, 126, No. 2, 238 (2021).

    Article  Google Scholar 

  3. J. Eichler, J. Rodel, U. Eisele, and M. Hoffman, J. Am. Ceram. Soc., 90, 2830 (2007).

    Article  Google Scholar 

  4. B. Stawarczyk, M. Ozcan, L. Hallmann, et al., Clin. Oral Invest., 17, 269 (2013).

    Article  Google Scholar 

  5. T. Martin, Ceramics – Silikáty, 52, No. 3, 165 (2008).

    Google Scholar 

  6. R. H.J. Hannink, P. M. Kelly, and B. C. Muddle, J. Am. Ceram. Soc., 83, 461 (2000).

    Article  Google Scholar 

  7. J. Chevalier, L. Gremillardw, A. V. Virkar, and D. R. Clarke, J. Am. Ceram. Soc., 92, No. 9, 1901 (2009).

    Article  Google Scholar 

  8. M. Trunec and Z. Chlup, Scr. Mater., 61, No. 1, 56 (2009).

    Article  Google Scholar 

  9. G. D. Quinn and R. C. Bradt, J. Am. Ceram. Soc., 90, 673 (2007).

    Article  Google Scholar 

  10. D. Tovar-Vargas, E. Roitero, M. Anglada, et al., J. Eur. Cer. Soc., 41, No. 11, 5602 (2021).

    Article  Google Scholar 

  11. D. Casellas, M. M. Nagl, L. Llanes, and M. Anglada, J. Mater. Proc. Technol., 143144, 148 (2003).

  12. K. Niihara, R. Morena, and D. P.H. Hasselman, J. Mater. Sci. Lett., 1, 13 (1982).

    Article  Google Scholar 

  13. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshal, J. Am. Ceram. Soc., 64, 533 (1981).

    Article  Google Scholar 

  14. H. Tsubakino, Y. Kuroda, and M. Niibe, J. Am. Ceram. Soc., 82, No. 10, 2921 (1999).

    Article  Google Scholar 

  15. X. Y. Chen, X. H. Zheng, H. S. Fang, et al., J. Mater. Sci. Lett., 21, 415 (2002).

    Article  Google Scholar 

  16. S. Deville and J. Chevalier, J. Am. Ceram. Soc., 86, No. 12, 2225 (2003).

    Article  Google Scholar 

  17. S. Deville, J. Chevalier, and L. Gremillard, J. Mater. Sci. Lett., 40, 3821 (2005).

    ADS  Google Scholar 

  18. Solver Pro SPM. Instruction Manual. MDT-Nanotechnology, Moscow (2006).

    Google Scholar 

  19. G. Shlyakhova and A. V. Bochkareva, Russ. Phys. J., 63, No. 7, 1226 (2020).

    Article  Google Scholar 

  20. N. L. Savchenko, T.Yu. Sablina, I. N. Sevost’yanova, et al., Tech. Phys. Lett., 44, NO. 8, 663 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Sablina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 46–52, April, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sablina, T.Y., Sevostyanova, I.N. & Shlyakhova, G.V. Influence of the Grain Size of ZrO2(Y2O3) Ceramics on the Hardness, Fracture Toughness and Formation of a Transformation-Deformation Relief in the Indentation Zone. Russ Phys J 65, 635–642 (2022). https://doi.org/10.1007/s11182-022-02679-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02679-1

Keywords

Navigation