Skip to main content

The Effect of Sintering Temperature on Crack Growth Resistance Characteristics of Fine-Grained Partially Stabilized Zirconia Determined by Various Test Methods

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Abstract

Zirconium oxide (zirconia) is widely used as a structural material in various applications. However, upon heating, zirconia undergoes disruptive phase changes. By adding small percentages of yttria, these phase changes are eliminated, and the resulting yttria-stabilized zirconia material has superior thermal, mechanical, and electrical properties. The transformation toughening mechanisms allow getting higher strength and crack growth resistance of such ceramics. In this work, yttria-stabilized zirconia ceramics sintered at various temperatures have been studied. The series of beam specimens of ZrO2 ceramics partially stabilized with 3, 4, and 5 mol% Y2O3 were prepared using a conventional sintering technique. Three sintering temperatures were used for each series: 1450 °C, 1500 °C, and 1550 °C. Two different mechanical tests were performed: single-edge notch beam test under three-point bending and fracture toughness test by indentation method. In both cases, fracture toughness was calculated using obtained experimental data. Based on the constructed dependences of fracture toughness on sintering temperature for the specimen series, it was revealed that both the yttria percentage and sintering temperature affect the mechanical behavior of the ceramics. The maximum transformation toughening effect was revealed for ZrO2–5 mol% Y2O3 ceramics. Based on the studies of fracture surface images and X-ray diffraction analysis, it was concluded that transformation toughening of such ceramics is accompanied by distinct changes in the fracture surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shabri HA, Othman MHD, Mohamed MA et al (2021) Recent progress in metal-ceramic anode of solid oxide fuel cell for direct hydrocarbon fuel utilization: A review. Fuel Process Technol 212:106626. https://doi.org/10.1016/j.fuproc.2020.106626

    Article  Google Scholar 

  2. Serbenyuk TB, Prikhna TO, Sverdun VB et al (2018) Effect of the additive of Y2O3 on the structure formation and properties of composite materials based on AlN–SiC. J Superhard Materials 40(1):8–15. https://doi.org/10.3103/S1063457618010021

    Article  Google Scholar 

  3. Dobrzański LA, Dobrzański LB, Dobrzańska-Danikiewicz AD (2020) Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics. Arch Mater Sci Eng 102(2):59–85. https://doi.org/10.5604/01.3001.0014.1525

    Article  Google Scholar 

  4. Posuvailo VM, Kulyk VV, Duriagina ZA et al (2020) The effect of electrolyte composition on the plasma electrolyte oxidation and phase composition of oxide ceramic coatings formed on 2024 aluminium alloy. Arch Mater Sci Eng 105(2):49–55. https://doi.org/10.5604/01.3001.0014.5761

    Article  Google Scholar 

  5. Cherepova TS, Dmytrieva HP, Dukhota OI et al (2016) Properties of nickel powder alloys hardened with titanium carbide. Mater Sci 52(2):173–179. https://doi.org/10.1007/s11003-016-9940-2

    Article  Google Scholar 

  6. Bocanegra-Bernal MH, Díaz de la Torre S (2002) Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. J Mater Sci 37:4947–4971. https://doi.org/10.1023/A:1021099308957

    Article  ADS  Google Scholar 

  7. Ropyak LY, Makoviichuk MV, Shatskyi IP et al (2020) Stressed state of laminated interference-absorption filter under local loading. Funct Mater 27(3):638–642. https://doi.org/10.15407/fm27.03.638

  8. Ye K, Blikharskyy Z, Vira V et al (2021) Nanostructural changes in a Ni/NiO cermet during high-temperature reduction and reoxidation. Nanomaterials and nanocomposites, nanostructure surfaces, and their applications. Springer Proc Phys 246:219–229. https://doi.org/10.1007/978-3-030-51905-6_17

    Article  Google Scholar 

  9. Dobrzański LA, Dobrzański LB, Dobrzańska-Danikiewicz AD (2020) Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics. J Achieve Mater and Manuf Eng 99(1):14–41. https://doi.org/10.5604/01.3001.0014.1598

    Article  Google Scholar 

  10. Vasyliv BD, Podhurska VY, Ostash OP et al (2018) Effect of a hydrogen sulfide-containing atmosphere on the physical and mechanical properties of solid oxide fuel cell materials. Nanochemistry, biotechnology, nanomaterials, and their applications. Springer Proc Phys 214:475–485. https://doi.org/10.1007/978-3-319-92567-7_30

    Article  Google Scholar 

  11. Budzianowski WM, Milewski J (2011) Solid-oxide fuel cells in power generation applications: A review. Recent Patents Eng 5(3):165–189. https://doi.org/10.2174/187221211797636926

    Article  Google Scholar 

  12. Komatsu Y, Sciazko A, Shikazono N (2021) Isostatic pressing of screen printed nickel-gadolinium doped ceria anodes on electrolyte-supported solid oxide fuel cells. J Power Sources 485:229317. https://doi.org/10.1016/j.jpowsour.2020.229317

    Article  Google Scholar 

  13. Vasyliv BD (2010) Improvement of the electric conductivity of the material of anode in a fuel cell by the cyclic redox thermal treatment. Mater Sci 46(2):260–264. https://doi.org/10.1007/s11003-010-9282-4

    Article  Google Scholar 

  14. Wejrzanowski T, Haj Ibrahim S, Cwieka K et al (2018) Multi-modal porous microstructure for high temperature fuel cell application. J Power Sources 373:85–94. https://doi.org/10.1016/j.jpowsour.2017.11.009

    Article  Google Scholar 

  15. Podhurska V, Vasyliv B (2012) Influence of NiO reduction on microstructure and properties of porous Ni–ZrO2 substrates. In: Proceedings of the 3rd international conference on oxide materials for electronic engineering (OMEE-2012), Lviv, Ukraine, pp 293–294. https://doi.org/10.1109/OMEE.2012.6464761

  16. Danilenko I, Lasko G, Brykhanova I et al (2017) The peculiarities of structure formation and properties of zirconia-based nanocomposites with addition of Al2O3 and NiO. Nanoscale Res Lett 12:125. https://doi.org/10.1186/s11671-017-1901-7

    Article  ADS  Google Scholar 

  17. Milewski J, Lewandowski J, Miller A (2008) Reducing CO2 emissions from a coal fired power plant by using a molten carbonate fuel cell. Proceedings of the ASME Turbo Expo 2:389–395. https://doi.org/10.1115/GT2008-50100

    Article  Google Scholar 

  18. Milewski J, Lewandowski J (2009) Solid oxide fuel cell fuelled by biogases. Arch Thermo 30(4):3–12. https://www.imp.gda.pl/fileadmin/doc/imp_publishing/wimp/archives%20of%20thermodynamics/C_09_4.pdf

  19. Dobrzański LA, Dobrzański LB, Dobrzańska-Danikiewicz AD (2020) Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage. J Achievements in Mater and Manuf Eng 98(2):56–85. https://doi.org/10.5604/01.3001.0014.1481

  20. Savka SS, Popovych DI, Serednytski AS (2017) Molecular dynamics simulations of the formation processes of zinc oxide nanoclusters in oxygen environment. Nanophysics, Nanomaterials, Interface Studies, and Applications. Springer Proc Phys 195:145–156. https://doi.org/10.1007/978-3-319-56422-7_11

    Article  Google Scholar 

  21. Milewski J, Kupecki J, Szczęśniak A et al (2021) Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors. Int J Hydrogen Energy 46(72):35765–35776. https://doi.org/10.1016/j.ijhydene.2020.11.217

    Article  Google Scholar 

  22. Vasyliv B, Podhurska V, Ostash O (2017) Preconditioning of the YSZ–NiO fuel cell anode in hydrogenous atmospheres containing water vapor. Nanoscale Res Lett 12:265. https://doi.org/10.1186/s11671-017-2038-4

    Article  ADS  Google Scholar 

  23. Witz G, Shklover V, Steurer W et al (2007) Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by Rietveld refinement of X-ray powder diffraction patterns. J Am Ceram Soc 90(9):2935–2940. https://doi.org/10.1111/j.1551-2916.2007.01785.x

    Article  Google Scholar 

  24. Andrzejczuk M, Vasylyev O, Brodnikovskyi I et al (2014) Microstructural changes in NiO–ScSZ composite following reduction processes in pure and diluted hydrogen. Mater Charact 87:159–165. https://doi.org/10.1016/j.matchar.2013.11.011

    Article  Google Scholar 

  25. Clarke DR, Levi CG (2003) Material design for the next generation thermal barrier coatings. Annu Rev Mater Res 33:383–417. https://doi.org/10.1146/annurev.matsci.33.011403.113718

    Article  ADS  Google Scholar 

  26. Smyrnova-Zamkova MY, Ruban OK, Bykov OI et al (2018) Physico-chemical properties of fine-grained powder in Al2O3–ZrO2–Y2O3–CeO2 system produced by combined method. Comp Theory Practice 18(4):234–240. https://kompozyty.ptmk.net/pliczki/pliki/1290_2018t04_maria-y-smyrnova-zamkova-.pdf

  27. Vasyliv B, Milewski J, Podhurska V et al (2021) Study of the degradation of a fine-grained YSZ–NiO anode material during reduction in hydrogen and reoxidation in air. Appl Nanosci. https://doi.org/10.1007/s13204-021-01768-w

    Article  Google Scholar 

  28. Smyrnova-Zamkova MY, Red’ko VP, Ruban OK et al (2017) The properties of nanocrystalline powder of 90% Al2O3–10% ZrO2 (wt.%) obtained via the hydrothermal synthesis/mechanical mixing. Nanosistemi Nanomater Nanotehnol 15(2):309–317. https://doi.org/10.15407/nnn.15.02.0309

  29. Sukhova OV (2009) Influence of mechanisms of structure formation of interfaces in composites on their properties. Metallofiz Noveishie Tekhnol 31(7):1001–1012

    Google Scholar 

  30. Dudnik OV, Marek IO, Ruban OK et al (2020) Effect of heat treatment on the structure and phase composition of the nanosized powder based on a ZrO2 solid solution. Powder Metall Met Ceram 59(1–2):1–8. https://doi.org/10.1007/s11106-020-00132-x

    Article  Google Scholar 

  31. Efremenko VG, Chabak YG, Shimizu K et al (2017) Structure refinement of high-Cr cast iron by plasma surface melting and post-heat treatment. Mater Des 126:278–290. https://doi.org/10.1016/j.matdes.2017.04.022

    Article  Google Scholar 

  32. Zhou XW, Shen YF, Jin HM (2011) Effect of deposition mechanism and microstructure of nano-ceria oxide addition on Ni-P coating by pulse electrodeposition. Adv Mater Res 326:151–156. https://doi.org/10.4028/www.scientific.net/AMR.326.151

    Article  Google Scholar 

  33. Shevchenko AV, Lashneva VV, Ruban AK et al (2016) Synthesis and study of high-purity nanocrystalline powder of a solid solution of CeO2 and Y2O3 in zirconium dioxide. Powder Metall Met Ceram 54(9–10):548–553. https://doi.org/10.1007/s11106-016-9748-5

    Article  Google Scholar 

  34. Kujawa M, Suwak R, Dobrzański LA et al (2021) Thermal characterization of halloysite materials for porous ceramic preforms. Arch Mater Sci Eng 107(1):5–15. https://doi.org/10.5604/01.3001.0014.8189

    Article  Google Scholar 

  35. Marek IO, Ruban OK, Redko VP et al (2019) Physicochemical properties of hydrothermal nanocrystalline ZrO2–Y2O3–CeO2 powders. Powder Metall Met Ceram 58(3–4):125–132. https://doi.org/10.1007/s11106-019-00055-2

    Article  Google Scholar 

  36. Kumar A, Kumar P, Dhaliwal AS (2021) Structural studies of zirconia and yttria doped zirconia for analysing it phase stabilization criteria. IOP Conf. Series: Mater Sci Eng 1033:012052. https://doi.org/10.1088/1757-899X/1033/1/012052

    Article  Google Scholar 

  37. Kern F, Gommeringer A (2020) Mechanical properties of 2Y–TZP fabricated from detonation synthesized powder. Ceram 3(4):440–452. https://doi.org/10.3390/ceramics3040037

    Article  Google Scholar 

  38. Alves MFRP, Ribeiro S, Suzuki PA et al (2021) Effect of Fe2O3 addition and sintering temperature on mechanical properties and translucence of zirconia dental ceramics with different Y2O3 content. Mater Res 24(2):e20200402. https://doi.org/10.1590/1980-5373-MR-2020-0402

    Article  Google Scholar 

  39. Jeong K-W, Han J-S, Yang G-U et al (2021) Influence of preaging temperature on the indentation strength of 3Y–TZP aged in ambient atmosphere. Materials 14:2767. https://doi.org/10.3390/ma14112767

    Article  ADS  Google Scholar 

  40. Tsai Y-Y, Lee T-M, Kuo J-C (2021) Hydrothermal-aging-induced lattice distortion in yttria-stabilized zirconia using EBSD technique. Micron 145:103053. https://doi.org/10.1016/j.micron.2021.103053

    Article  Google Scholar 

  41. Brandon JR, Taylor R (1991) Phase stability of zirconia-based thermal barrier coatings Part I, Zirconia-yttria alloys. Surf Coat Technol 46:75–90. https://doi.org/10.1016/0257-8972(91)90151-L

    Article  Google Scholar 

  42. Schulz U (2000) Phase transformation in EB-PVD yttria partially stabilized zirconia thermal barrier coatings during annealing. J Am Ceram Soc 83(4):904–910. https://doi.org/10.1111/j.1151-2916.2000.tb01292.x

    Article  Google Scholar 

  43. Azzopardi A, Mevrel R, Saint-Ramond B et al (2004) Influence of aging on structure and thermal conductivity of Y-PSZ and Y-FSZ EB–PVD coatings. Surf Coat Technol 177–178:131–139. https://doi.org/10.1016/j.surfcoat.2003.08.073

    Article  Google Scholar 

  44. Miller RA, Smialek JL, Garlick RG (1981) Phase stability in plasma sprayed, partially stabilized zirconia–yttria. In: Heuer AH, Hobbs LW (eds) Advances in Ceramics. Vol. 3, Science and Technology of Zirconia I. Am Ceram Soc, Columbus, pp. 241–253

    Google Scholar 

  45. Ilavsky J, Stalick JK, Wallace J (2001) Thermal spray yttria-stabilized zirconia phase changes during annealing. J Therm Spray Technol 10(3):497–501. https://doi.org/10.1361/105996301770349277

    Article  ADS  Google Scholar 

  46. Scott HG (1975) Phase relationships in the zirconia–yttria system. J Mater Sci 10:1527–1535. https://doi.org/10.1007/BF01031853

    Article  ADS  Google Scholar 

  47. Katamura J, Sakuma T (1998) Computer simulation of the microstructural evolution during the diffusionless cubic-to-tetragonal transition in the system ZrO2–Y2O3. Acta Mater 46(5):1569–1575. https://doi.org/10.1016/S1359-6454(97)00356-X

    Article  ADS  Google Scholar 

  48. Gaddam A, Brazete DS, Neto AS et al (2021) Three-dimensional printing of zirconia scaffolds for load bearing applications: study of the optimal fabrication conditions. J Am Ceram Soc 104(9):4368–4380. https://doi.org/10.1111/jace.17874

    Article  Google Scholar 

  49. Ji SH, Kim DS, Park MS et al (2021) Sintering process optimization for 3YSZ ceramic 3D-printed objects manufactured by stereolithography. Nanomaterials 11:192. https://doi.org/10.3390/nano11010192

    Article  Google Scholar 

  50. Podhurs’ka VY, Vasyliv BD, Ostash OP, et al (2014) Structural transformations in the NiO-containing anode of ceramic fuel cells in the course of its reduction and oxidation. Mater Sci 49(6):805–811. https://doi.org/10.1007/s11003-014-9677-8

    Article  Google Scholar 

  51. Tao S, Yang J, Zhai M et al (2020) Thermal stability of YSZ thick thermal barrier coatings deposited by suspension and atmospheric plasma spraying. Curr Comput-Aided Drug Des 10(11):984. https://doi.org/10.3390/cryst10110984

    Article  Google Scholar 

  52. Fan Z, Sun X, Zhuo X et al (2021) Femtosecond laser polishing yttria-stabilized zirconia coatings for improving molten salts corrosion resistance. Cor Sci 184:109367. https://doi.org/10.1016/j.corsci.2021.109367

    Article  Google Scholar 

  53. Rudolphi M, Galetz MC, Schütze M (2021) Mechanical stability diagrams for thermal barrier coating systems. J Therm Spray Technol 30:694–707. https://doi.org/10.1007/s11666-021-01163-5

    Article  ADS  Google Scholar 

  54. Ostash OP, Andreiko IM, Kulyk VV et al (2013) Influence of braking on the microstructure and mechanical behavior of steels of railroad wheel. Mater Sci 48(5):569–574. https://doi.org/10.1007/s11003-013-9539-9

    Article  Google Scholar 

  55. Sciazko A, Shimura T, Komatsu Y et al (2021) Ni-GDC and Ni-YSZ electrodes operated in solid oxide electrolysis and fuel cell modes. J Therm Sci Technol 16(1):JTST0013. https://doi.org/10.1299/jtst.2021jtst0013

  56. Nykyforchyn H, Krechkovska H, Student O et al (2019) Feature of stress corrosion cracking of degraded gas pipeline steels. Procedia Struct Integrity 16:153–160. https://doi.org/10.1016/j.prostr.2019.07.035

    Article  Google Scholar 

  57. Romaniv OM, Vasyliv BD (1998) Some features of formation of the structural strength of ceramic materials. Mater Sci 34(2):149–161. https://doi.org/10.1007/BF02355530

    Article  Google Scholar 

  58. Efremenko VG, Chabak YG, Lekatou A et al (2016) High-temperature oxidation and decarburization of 14.55 wt pct Cr-cast iron in dry air atmosphere. Metall Mater Trans A 47A(2):1529–1543. https://doi.org/10.1007/s11661-016-3336-7

  59. Buchaniec S, Sciazko A, Mozdzierz M et al (2019) A novel approach to the optimization of a solid oxide fuel cell anode using evolutionary algorithms. IEEE Access 7:34361–34372. https://doi.org/10.1109/ACCESS.2019.2904327

    Article  Google Scholar 

  60. Włodarczyk-Fligier A, Polok-Rubiniec M, Konieczny J (2020) Thermal analysis of matrix composite reinforced with Al2O3 particles. J Achievements in Mater and Manuf Eng 100(1):5–11. https://doi.org/10.5604/01.3001.0014.1957

    Article  Google Scholar 

  61. Romaniv OM, Zalite IV, Simin’kovych VM, et al (1996) Effect of the concentration of zirconium dioxide on the fracture resistance of Al2O3-ZrO2 ceramics. Mater Sci 31(5):588–594. https://doi.org/10.1007/BF00558793

    Article  Google Scholar 

  62. Khajavi P, Hndriksen PV, Chevalier J et al (2020) Improving the fracture toughness of stabilized zirconia-based solid oxide cells fuel electrode supports: Effects of type and concentration of stabilizer(s). J Eur Ceram Soc 40(15):5670–5682. https://doi.org/10.1016/j.jeurceramsoc.2020.05.042

    Article  Google Scholar 

  63. Buyakov AS, Mirovoy YA, Smolin AY et al (2021) Increasing fracture toughness of zirconia-based composites as a synergistic effect of the introducing different inclusions. Ceram Int 47(8):10582–10589. https://doi.org/10.1016/j.ceramint.2020.12.170

    Article  Google Scholar 

  64. Ivasyshyn AD, Vasyliv BD (2001) Effect of the size and form of specimens on the diagram of growth rates of fatigue cracks. Mater Sci 37(6):1002–1004. https://doi.org/10.1023/A:1015669913601

    Article  Google Scholar 

  65. Vasyliv BD (2002) Initiation of a crack from the edge of a notch with oblique front in specimens of brittle materials. Mater Sci 38(5):724–728. https://doi.org/10.1023/A:1024222709514

    Article  Google Scholar 

  66. Kulyk VV, Duriagina ZA, Vasyliv BD et al (2021) Effects of yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized zirconia. Arch Mater Sci Eng 109(2):65–79. https://doi.org/10.5604/01.3001.0015.2625

    Article  Google Scholar 

  67. ASTM E 384-11 (2011) Standard test method for Knoop and Vickers hardness of materials. ASTM International. https://doi.org/10.1520/E0384-11

  68. ASTM C 1327-03 (2003) Standard test method for Vickers indentation hardness of advanced ceramics. ASTM International. https://doi.org/10.1520/C1327-03

  69. Cook RF, Pharr GM (1990) Direct observation and analysis of indentation cracking in glasses and ceramics. J Am Ceram Soc 73(4):787–817. https://doi.org/10.1111/j.1151-2916.1990.tb05119.x

    Article  Google Scholar 

  70. Ostash OP, Kulyk VV, Poznyakov VD et al (2017) Fatigue crack growth resistance of welded joints simulating the weld-repaired railway wheels metal. Arch Mater Sci Eng 86(2):49–55. https://doi.org/10.5604/01.3001.0010.4885

    Article  Google Scholar 

  71. Nastic A, Merati A, Bielawski M et al (2015) Instrumented and Vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened Al2O3 and SiC armor. J Mater Sci Technol 31(8):773–783. https://doi.org/10.1016/j.jmst.2015.06.005

    Article  Google Scholar 

  72. Lawn BR (1993) Fracture of brittle solids, 2nd edn, Cambridge. https://doi.org/10.1017/CBO9780511623127

  73. Adams JW, Ruh R, Mazdiyasni KS (1997) Young’s modulus, flexural strength, and fracture of yttria-stabilized zirconia versus temperature. J Am Ceram Soc 80(4):903–908. https://doi.org/10.1111/j.1151-2916.1997.tb02920.x

    Article  Google Scholar 

  74. Lawn BR, Swain MV (1975) Microfracture beneath point indentations in brittle solids. J Mater Sci 10(1):113–122. https://doi.org/10.1007/BF00541038

    Article  ADS  Google Scholar 

  75. Lawn BR, Fuller ER (1975) Equilibrium penny-like cracks in indentation fracture. J Mater Sci 10(12):2016–2024. https://doi.org/10.1007/BF00557479

    Article  ADS  Google Scholar 

  76. Niihara K, Morena R, Hasselman DPH (1982) Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett 1(1):13–16. https://doi.org/10.1007/BF00724706

    Article  Google Scholar 

  77. Tanaka K (1987) Elastic/plastic indentation hardness and indentation fracture toughness: The inclusion core model. J Mater Sci 22(4):1501–1508. https://doi.org/10.1007/BF01233154

    Article  ADS  Google Scholar 

  78. Evans AG, Charles EA (1976) Fracture toughness determinations by indentation. J Am Ceram Soc 59(7–8):371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x

    Article  Google Scholar 

  79. Gogotsi GA, Dub SN, Lomonova EE et al (1995) Vickers and Knoop indentation behaviour of cubic and partially stabilized zirconia crystals. J Eur Ceram Soc 15(5):405–413. https://doi.org/10.1016/0955-2219(95)91431-M

    Article  Google Scholar 

  80. Niihara K (1983) A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics. J Mater Sci Lett 2(5):221–223. https://doi.org/10.1007/BF00725625

    Article  Google Scholar 

  81. Aswad MA (2014) Comparison of the fracture toughness of high temperature ceramic measured by digital image correlation and indentation method. J Univ Babylon 22(4):927–937. https://www.iasj.net/iasj?func=article&aId=99010

  82. Grigoriev ON, Vinokurov VB, Mosina TV et al (2017) Kinetics of shrinkage, structurization, and the mechanical characteristics of zirconium boride sintered in the presence of activating additives. Powder Metall Met Ceram 55(11–12):676–688. https://doi.org/10.1007/s11106-017-9855-y

    Article  Google Scholar 

  83. Anstis GR, Chantikul P, Lawn BR et al (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurement. J Am Ceram Soc 64(9):533–538. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

    Article  Google Scholar 

  84. Danilenko I, Glazunov F, Konstantinova T et al (2014) Effect of Ni/NiO particles on structure and crack propagation in zirconia based composites. Adv Mater Lett 5(8):465–471. https://doi.org/10.5185/amlett.2014.amwc1040II

    Article  Google Scholar 

  85. Blendell JE (1979) The origins of internal stresses in polycrystalline alumina and their effects on mechanical properties. Cambridge

    Google Scholar 

  86. Lawn BR, Evans AG, Marshall DB (1980) Elastic/plastic indentation damage in ceramics: The median/radial crack system. J Am Ceram Soc 63(9–10):574–581. https://doi.org/10.1111/j.1151-2916.1980.tb10768.x

    Article  Google Scholar 

  87. Vasyliv BD (2009) A procedure for the investigation of mechanical and physical properties of ceramics under the conditions of biaxial bending of a disk specimen according to the ring–ring scheme. Mater Sci 45(4):571–575. https://doi.org/10.1007/s11003-010-9215-2

    Article  Google Scholar 

  88. Smyrnova-Zamkova MY, Ruban OK, Bykov OI et al (2021) The influence of the ZrO2 solid solution amount on the physicochemical properties of Al2O3–ZrO2–Y2O3–CeO2 powders. Powder Metall Met Ceram 60(3–4):129–141. https://doi.org/10.1007/s11106-021-00222-4

    Article  Google Scholar 

  89. Lankford J (1982) Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method. J Mater Sci Lett 1(11):493–495. https://doi.org/10.1007/BF00721938

    Article  Google Scholar 

  90. Vasyliv B, Kulyk V, Duriagina Z et al (2020) Estimation of the effect of redox treatment on microstructure and tendency to brittle fracture of anode materials of YSZ–NiO(Ni) system. Eastern-European J Enter Tech 108/6(12):67–77. https://doi.org/10.15587/1729-4061.2020.218291

  91. ASTM E 399-20a (2020) Standard test method for linear-elastic plane-strain fracture toughness of metallic materials. ASTM International. https://doi.org/10.1520/E0399-20A

  92. ASTM C 1421-18 (2018) Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature. ASTM Inter. https://doi.org/10.1520/C1421-18

  93. Kübier J (2002) Fracture toughness of ceramics using the SEVNB method: From a preliminary study to a standard test method. In: Salem J (ed) Fracture resistance testing of monolithic and composite brittle materials. ASTM International, 93–106. https://doi.org/10.1520/STP10473S

  94. Peng Z, Gong J, Miao H (2004) On the description of indentation size effect in hardness testing for ceramics: analysis of the nanoindentation data. J Eur Ceram Soc 24(8):2193–2201. https://doi.org/10.1016/S0955-2219(03)00641-1

    Article  Google Scholar 

  95. Ropyak LY, Shatskyi IP, Makoviichuk MV (2017) Influence of the oxide-layer thickness on the ceramic-aluminium coating resistance to indentation. Metallofiz Noveishie Tekhnol 39(4):517–524. https://doi.org/10.15407/mfint.39.04.0517

  96. Spiridonova IM, Sukhovaya EV, Pilyaeva SB et al (2002) The use of composite coatings during metallurgical equipment parts repair. Metallurgicheskaya i Gornorudnaya Promyshlennost 3:58–61

    Google Scholar 

  97. Rodaev VV, Zhigachev AO, Tyurin AI et al (2021) An engineering zirconia ceramic made of baddeleyite. Materials 14(16):4676. https://doi.org/10.3390/ma14164676

    Article  ADS  Google Scholar 

  98. Duriagina Z, Kulyk V, Kovbasiuk T et al (2021) Synthesis of functional surface layers on stainless steels by laser alloying. Metals 11(3):434. https://doi.org/10.3390/met11030434

    Article  Google Scholar 

  99. Kulyk VV, Vasyliv BD, Duriagina ZA et al (2021) The effect of water vapor containing hydrogenous atmospheres on the microstructure and tendency to brittle fracture of anode materials of YSZ–NiO(Ni) system. Arch Mater Sci Eng 108(2):49–67. https://doi.org/10.5604/01.3001.0015.0254

    Article  Google Scholar 

  100. Ostash OP, Vasyliv BD, Podhurs’ka VY, et al (2011) Optimization of the properties of 10Sc1CeSZ-NiO composite by the redox treatment. Mater Sci 46(5):653–658. https://doi.org/10.1007/s11003-011-9337-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kulyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulyk, V.V. et al. (2023). The Effect of Sintering Temperature on Crack Growth Resistance Characteristics of Fine-Grained Partially Stabilized Zirconia Determined by Various Test Methods. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-031-18096-5_19

Download citation

Publish with us

Policies and ethics