Skip to main content
Log in

X-Ray Free-Electron Lasers with Variable Deflection Parameter of Undulators

  • Published:
Russian Physics Journal Aims and scope

The paper deals with X-ray free-electron lasers (FEL) with the variable deflection parameter of undulators with the electron buncher and harmonic amplifier. The analysis is given to the power evolution in the harmonic lasing self-seeded free electron laser (HLSS FEL), which is compared with the self-amplified spontaneous emission (SASE). Exact analytic expressions are used for Bessel coefficients in real beams and undulators as well as the analytic description of the FEL power evolution. The latest FELs with the variable deflection parameter are considered herein, namely: FLASH-II, European XFEL, SACLA and SwissFEL. A comparative analysis is presented for the FEL operation in the HLSS and SASE modes. The results of the analytical simulation of the FEL spectral parameters are in good agreement with the experimental data. It is shown that the HLSS FEL power grows more rapidly than during the self-amplified spontaneous emission at the same wavelength. The obtained results are compared with the experimental data on the FLASH-II FEL. It is found that the electron beam in the SACLA X-Ray FEL, which has a large energy spread, does not allow to use harmonic cascade amplification. As for the SwissFEL, the small spread in energy and the beam emittance provide an effective electron bunching on the second-harmonic wavelength. This allows reaching the HLSS FEL saturation power 10 m earlier than in the SASE, the radiation power and wavelength being constant. The calculations show that the effective harmonic amplification is also possible in the European XFEL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginzburg, Isvestia Akademii Nauk SSSR (Fizika), 11, No. 2, 1651 (1947).

    Google Scholar 

  2. H. Motz, W. Thon, and R. N. J. Whitehurst, Appl. Phys., 24, 826 (1953).

    Article  Google Scholar 

  3. J. M. Madey, J. Appl. Phys., 42, 1906 (1971).

    Article  ADS  Google Scholar 

  4. D. A. G. Deacon, et al., Phys. Rev. Lett., 38, 892 (1977).

    Article  ADS  Google Scholar 

  5. B. W. J. McNeil and N. R. Thompson, Nat. Photonics, 4, 814 (2010).

    Article  ADS  Google Scholar 

  6. C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys., 88, 015006 (2016).

    Article  ADS  Google Scholar 

  7. Z. Huang and K. J. Kim, Phys. Rev. ST Accel. Beams, 10, 034801 (2007).

    Article  ADS  Google Scholar 

  8. P. Emma, R. Akre, J. Arthur, et al., Nat. Photonics, 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  9. E. A. Schneidmiller and M. V. Yurkov, Proceedings of FEL, Switzerland, Basel (2014).

    Google Scholar 

  10. Heung-Sik Kang, et al., Nat. Photonics, Nat. Photonics, 11, 708–713 (2017).

    Article  ADS  Google Scholar 

  11. D. Ratner, A. Brachmann, F. J. Decker, et al., Phys. Rev. ST Accel. Beams, 14, 060701 (2011).

    Article  ADS  Google Scholar 

  12. E. Allaria, F. Curbis, M. Coreno, et al., Phys. Rev. Lett., 100, 174801 (2008).

    Article  ADS  Google Scholar 

  13. L. Giannessi, et al., Phys. Rev. ST Accel. Beams, 14, 060712 (2011).

    Article  ADS  Google Scholar 

  14. S. G. Biedron, et al., Nucl. Instrum. Methods Phys. Res. A., 483, 94–100 (2002).

    Article  ADS  Google Scholar 

  15. E. A. Schneidmiller and M. V. Yurkov, Phys. Rev. ST Accel. Beams, 15, 080702 (2012).

    Article  ADS  Google Scholar 

  16. B. W. J. McNeil, G. R. M. Robb, M. W. Poole, and N. R. Thompson, Phys. Rev. Lett., 96, 084801 (2006).

    Article  ADS  Google Scholar 

  17. T. Tanikawa, et al., EPL, 94, 34001 (2011).

    Article  ADS  Google Scholar 

  18. K. Prince, E. Allaria, C. Callegari, et al., Nat. Photonics, 10, 176–179 (2016).

    Article  ADS  Google Scholar 

  19. G. Lambert, T. Hara, D. Garzella, et al., Nat. Phys., 4, 296–300 (2008).

    Article  Google Scholar 

  20. L.-H. Yu, et al., Science, 289, 932 (2000).

    Article  ADS  Google Scholar 

  21. T. Shaftan and L.-H. Yu, Phys. Rev. E, 71, 046501 (2005).

    Article  ADS  Google Scholar 

  22. G. Dattoli, P. L. Ottaviani, and S. Pagnutti, J. Appl. Phys., 97, 113102 (2005).

    Article  ADS  Google Scholar 

  23. R. Bonifacio, L. Salvo De, and P. Pierini, Nucl. Instrum. Meth. A, 293, 627 (1990).

    Article  ADS  Google Scholar 

  24. B. Faatz, et al., Appl. Sci., No. 11, 1114 (2017).

  25. E. A. Schneidmiller, et al., Phys. Rev. ST Accel. Beams, 20, 020705 (2017).

    Article  ADS  Google Scholar 

  26. Th. Tschentscher, et al., Appl. Sci., 7, No. 6, 592 (2017).

    Article  Google Scholar 

  27. E. A. Schneidmiller and M. V. Yurkov, Photon Beam Properties at the European XFEL, Hamburg (2011).

  28. Ichiro Inoue, et al., Nat. Photonics, 13, 319 (2019).

    Article  ADS  Google Scholar 

  29. K. Tono, et al., J. Synchrotron Radiat., 26, 595−602 (2019).

    Article  Google Scholar 

  30. Ch. J. Milne, et al., Appl. Sci., 7, 720 (2017).

    Article  Google Scholar 

  31. R. Abela, et al., Struct. Dyn., 4, 061602 (2017).

    Article  Google Scholar 

  32. P. Juranic, et al., J. Synchrotron Radiat., 26, 906 (2019).

    Article  Google Scholar 

  33. R. Abela, et al., J. Synchrotron Radiat., 26, 1073 (2019).

    Article  Google Scholar 

  34. E. Prat, et al., Nat. Photonics, 14, 748–754 (2020).

    Article  ADS  Google Scholar 

  35. K. V. Zhukovsky, Results Phys., 13, 102248 (2019).

    Article  Google Scholar 

  36. K. V. Zhukovsky, J. Synchrotron Radiat., 26, 1481 (2019).

    Article  MathSciNet  Google Scholar 

  37. K. V. Zhukovsky, Russ. Phys J., 62, No. 6, 1043–1053 (2019).

    Article  Google Scholar 

  38. G. Mishra and A. Sharma, Nucl. Instrum. Methods Phys. Res., 976, 164287 (2020).

    Article  Google Scholar 

  39. G. Mishra, A. Sharma, and S. M. Khan, Prog. Electromagn. Res. C, 105, 217−227 (2020).

    Article  Google Scholar 

  40. K. V. Zhukovsky and A. M. Kalitenko, Russ. Phys J., 62, No. 2, 354–362 (2019).

    Article  Google Scholar 

  41. K. V. Zhukovsky, Opt. Laser Technol., 131, 106311 (2020).

    Article  Google Scholar 

  42. D. F. Alferov, et al., Part. Accel., 9, 223−236 (1979).

    Google Scholar 

  43. D. F. Alferov, Yu. A. Bashmakov, and P. A. Cherenkov, Phys. Usp., 32, No. 3, 200–227 (1989).

    Article  ADS  Google Scholar 

  44. V. G. Bagrov, V. F. Zal'mezh, M. M. Nikitin, and V. Y. Epp, Nucl. Instrum. Meth. A, 261, 54−55 (1987).

    Article  ADS  Google Scholar 

  45. N. A. Vinokurov and E. B. Luvichev, Phys. Usp., 58, No. 9, 850–871 (2015).

    Article  ADS  Google Scholar 

  46. G. Dattoli and P. L. Ottaviani, Opt. Commun., 204, No. 1, 283–297 (2002).

    Article  ADS  Google Scholar 

  47. G. Dattoli, L. Giannessi, P. L. Ottaviani, and C. Ronsivalle, J. Appl. Phys., 95, 3206–3210 (2004).

    Article  ADS  Google Scholar 

  48. G. Dattoli, E. Di Palma, S. Licciardi, and E. Sabia, Appl. Sci., 11, 85 (2021). DOI: https://doi.org/10.3390/app11010085.

    Article  Google Scholar 

  49. G. Dattoli, P. L. Ottaviani, and S. Pagnutti, Booklet for FEL Design., ENEA Publicazioni, Frascati (2007).

    Google Scholar 

  50. K. V. Zhukovsky and A. Kalitenko, J. Synchrotron Radiat., 26, 159–169 (2019).

    Article  Google Scholar 

  51. K. V. Zhukovsky, Results Phys., 19, 103361 (2020).

    Article  Google Scholar 

  52. K. V. Zhukovsky, Symmetry, 12, 1258 (2020).

    Article  Google Scholar 

  53. K. V. Zhukovsky, J. Synchrotron Radiat., 27, 1648−1661 (2020).

    Article  Google Scholar 

  54. K. V. Zhukovsky, Phys. Usp., 191, No. 3, 304−316 (2021).

    Article  ADS  Google Scholar 

  55. K. V. Zhukovsky, Ann. Phys., 553, No. 11 (2021). DOI: https://doi.org/10.1002/andp.202100091.

  56. K. V. Zhukovsky, Rad. Phys. Chem., 189, (2021). DOI: https://doi.org/10.1016/j.radphyschem.2021.109698.

  57. M. Xie, Nucl. Instrum. Methods Phys. Res., Sect. A, 445, 59 (2000).

    ADS  Google Scholar 

  58. M. Xie, in: Proc. “1995 Particle Accelerator Conference IEEE,” Piscataway, New Jersey (1995), p. 183.

  59. L. Giannessi, Seeding and Harmonic Generation in Free-Electron Lasers, in: Synchrotron Light Sources and Free-Electron Lasers, E. J. Jaeschke, et al. eds., Springer International Publishing, Switzerland (2016). DOI: https://doi.org/10.1007/978-3-319-14394-1_3.

  60. H. Ego, et al., in: Proc. IPAC, Korea, Busan (2016), MOPMW009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 143–151, December 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V. X-Ray Free-Electron Lasers with Variable Deflection Parameter of Undulators. Russ Phys J 64, 2331–2340 (2022). https://doi.org/10.1007/s11182-022-02594-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02594-5

Keywords

Navigation