Skip to main content
Log in

Undulators and generation of X-ray pulses in free-electron lasers with self-amplified spontaneous emission

  • Theoretical and Mathematical Physics (Review)
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The results of theoretical examination and comparative analysis of synchrotron radiation sources (specifically, undulators and X-ray free-electron lasers (FELs)) are presented. The problem of generation of shorter radiation pulses is prioritized; undulator systems and their corresponding FELs, which are considered to be the most promising in terms of generation of high-frequency ultrashort pulses of such radiation (in particular, in the X-ray range) are studied. The possibility of generation of higher harmonics is explored. The advantages and disadvantages of single-pass (with no reflecting elements) and multi-pass (with mirrors) FEL lasing schemes are revealed. The potential to reduce the duration of laser pulses produced by undulators and FELs and use them as sources of femtosecond pulses is investigated. The prospects for further development of X-ray free-electron lasers and the ways to improve the quality of their radiation with the given parameters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginzburg, Izv. Izv. Akad. Nauk SSSR, Ser. Fiz. 11, 1651 (1947).

    Google Scholar 

  2. H. Motz, W. Thon, and R. N. J. Whitehurst, Appl. Phys. 24, 826 (1953).

    Article  Google Scholar 

  3. L. A. Artsimovich and I. Ya. Pomeranchuk, Zh. Eksp. Teor. Fiz. 16, 379 (1946).

    Google Scholar 

  4. I. M. Ternov, V. V. Mikhailin, and V. R. Khalilov, Synchrotron Radiation and Its Applications (Mosk. Gos. Univ., Moscow, 1980) [in Russian].

    Google Scholar 

  5. D. F. Alferov, Yu. A. Bashmakov, and E. G. Bessonov, Sov. Phys. Tech. Phys. 18, 336 (1974).

    Google Scholar 

  6. D. F. Alferov, Yu. A. Bashmakov, and P. A. Cherenkov, Sov. Phys. Usp. 32, 200 (1989).

    Article  ADS  Google Scholar 

  7. V. G. Bagrov et al., Theory of Emission of Relativistic Particles, Ed. by V.A. Bordovitsyn (Fizmatlit, Moscow, 2002) [in Russian].

  8. B. W. J. McNeil and N. R. Thompson, Nat. Photon. 4, 814 (2010).

    Article  ADS  Google Scholar 

  9. E. G. Bessonov, M. V. Gorbunkov, B. S. Ishkhanov, P. V. Kostyukov, Y. A. Maslova, V. I. Shvedunov, V. G. Tunkin, and A. V. Vinogradov, Laser Part. Beams 26, 489 (2008).

    Article  Google Scholar 

  10. A. A. Sokolov and I. M. Ternov, Relativistic Electron (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  11. J. Feldhaus and B. Sonntag, in Strong Field Laser Physics, Ed. by T. Brabec (Springer, 2009), p. 91.

  12. A. A. Zholents, Laser Phys. 15, 855 (2005).

    Google Scholar 

  13. H. Zhirong and K. Kwang-Je, Phys. Rev. Spec. Top.–Accel. Beams 10, 034801 (2007).

    Article  ADS  Google Scholar 

  14. P. Emma et al., Nat. Photon. 4, 641 (2010).

    Article  ADS  Google Scholar 

  15. E. G. Bessonov, Proc. SPIE 6634, 66340X (2007).

    Article  ADS  Google Scholar 

  16. K. V. Zhukovsky, Moscow Univ. Phys. Bull. 70, 232 (2015). doi doi 10.3103/S0027134915040177

    Article  ADS  Google Scholar 

  17. K. Zhukovsky, in Synchrotron: Design, Properties and Applications, Ed. by D. M. Chua and H. F. Toh (Nova Sci. Publ., 2012), p. 39.

  18. K. Zhukovsky, J. Electromagn. Waves Appl. 29, 132 (2015).

    Google Scholar 

  19. S. Tripathi and G. Mishra, Rom. J. Phys. 56, 411 (2011).

    Google Scholar 

  20. G. Mishra, M. Gehlot, and J.-K. Hussain, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 495 (2009).

    Article  ADS  Google Scholar 

  21. G. Dattoli, V. V. Mikhailin, P. L. Ottaviani, and K. Zhukovsky, J. Appl. Phys. 100, 084507 (2006).

    Article  ADS  Google Scholar 

  22. K. Zhukovsky, Laser Part. Beams 34, 447 (2016). doi 10.1017/S0263034616000264

    Article  ADS  Google Scholar 

  23. D. Iracane and P. Bamas, Phys. Rev. Lett. 67, 3086 (1991).

    Article  ADS  Google Scholar 

  24. V. N. Korchuganov, N. U. Svechnikov, N. V. Smolyakov, and C. I. Tomin, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 4, 891 (2010).

    Article  Google Scholar 

  25. R. P. Walker, Nucl. Instrum. Methods Phys. Res., Sect. A 335, 328 (1993).

    Article  ADS  Google Scholar 

  26. H. Onuki and P. Elleaume, Undulators, Wigglers and Their Applications (Taylor & Francis, New York, 2003).

    Book  Google Scholar 

  27. P. V. Vagin, U. Englisch, T. Müller, A. Schöps, and M. Tischer, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 1055 (2011).

    Article  Google Scholar 

  28. J. Hussain, V. Gupta, and G. Mishra, Nucl. Instrum. Methods Phys. Res., Sect. A 608, 344 (2009).

    Article  ADS  Google Scholar 

  29. H. R. Reiss, Phys. Rev. A 22, 1786 (1980).

    Article  ADS  Google Scholar 

  30. N. V. Smolyakov, Nucl. Instrum. Methods Phys. Res., Sect. A 308, 83 (1991).

    Article  ADS  Google Scholar 

  31. J. Hussain and G. Mishra, Opt. Commun. 335, 126 (2015).

    Article  ADS  Google Scholar 

  32. G. Dattoli, V. V. Mikhailin, and K. V. Zhukovsky, Moscow Univ. Phys. Bull. 64, 507 (2009). doi 10.3103/S0027134909050087

    Article  Google Scholar 

  33. V. V. Mikhailin, K. V. Zhukovsky, and A. I. Kudyukova, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8, 422 (2014).

    Article  Google Scholar 

  34. G. Dattoli, V. V. Mikhailin, and K. Zhukovsky, J. Appl. Phys. 104, 124507 (2008).

    Article  ADS  Google Scholar 

  35. G. Dattoli, N. S. Mirian, E. Di Palma, and V. Petrillo, Phys. Rev. Spec. Top.–Accel. Beams 17, 050702 (2014).

    Article  ADS  Google Scholar 

  36. N. S. Mirian, G. Dattoli, E. DiPalma, and V. Petrillo, Nucl. Instrum. Methods Phys. Res., Sect. A 767, 227 (2014).

    Article  ADS  Google Scholar 

  37. K. Zhukovsky, Prog. Electromagn. Res. B 59, 245 (2014).

    Article  Google Scholar 

  38. K. Zhukovsky, J. Electromagn. Waves Appl. 28, 1869 (2014).

    Article  Google Scholar 

  39. K. V. Zhukovsky, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8, 1068 (2014).

    Article  Google Scholar 

  40. K. Zhukovsky, Nucl. Instrum. Methods Phys. Res., Sect. B 369, 9 (2016).

    Article  ADS  Google Scholar 

  41. M. Quattromini, M. Artioli, E. Di Palma, A. Petralia, L. Giannessi, Phys. Rev. Spec. Top.–Accel. Beams 15, 080704 (2012).

    Article  ADS  Google Scholar 

  42. K. Zhukovsky, Opt. Commun. 353, 35 (2015).

    Article  ADS  Google Scholar 

  43. G. Dattoli, H. M. Srivastava, and K. Zhukovsky, J. Comput. Appl. Math. 182, 165 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Dattoli, H. M. Srivastava, and K. Zhukovsky, Integr. Transform Spec. Funct. 17, 31 (2006).

    Article  Google Scholar 

  45. G. Dattoli and K. Zhukovsky, Appl. Math. Comput. 217, 7966 (2011).

    MathSciNet  Google Scholar 

  46. K. V. Zhukovsky, Moscow Univ. Phys. Bull. 70, 93 (2015). doi 10.3103/S0027134915020137

    Article  ADS  Google Scholar 

  47. K. Zhukovsky, Sci. World J. 2014, 454865 (2014).

    Article  Google Scholar 

  48. K. V. Zhukovsky, SpringerPlus 5, 119 (2016).

    Article  Google Scholar 

  49. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).

    MATH  Google Scholar 

  50. J. M. J. Madey, J. Appl. Phys. 42, 1906 (1971).

    Article  ADS  Google Scholar 

  51. L. Elias et al., Phys. Rev. Lett. 36, 717 (1976).

    Article  ADS  Google Scholar 

  52. D. A. G. Deacon et al., Phys. Rev. Lett. 38, 892 (1977).

    Article  ADS  Google Scholar 

  53. W. B. Colson, Phys. Lett. A 64, 190 (1977).

    Article  ADS  Google Scholar 

  54. N. M. Kroll and W. A. McMullin, Phys. Rev. A 17, 300 (1978).

    Article  ADS  Google Scholar 

  55. A. M. Kondratenko and E. L. Saldin, Part. Accel. 10, 207 (1980).

    Google Scholar 

  56. P. Sprangle and R. A. Smith, Phys. Rev. A 21, 293 (1980).

    Article  ADS  Google Scholar 

  57. A. Gover and P. Sprangle, IEEE J. Quantum Electron. 17, 1196 (1981).

    Article  ADS  Google Scholar 

  58. G. Dattoli, A. Marino, A. Renieri, and F. Romanelli, IEEE J. Quantum Electron. 17, 1371 (1981).

    Article  ADS  Google Scholar 

  59. R. Bonifacio, F. Casagrande, and G. Casati, Opt. Commun. 40, 219 (1982).

    Article  ADS  Google Scholar 

  60. R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Commun. 50, 373 (1984).

    Article  ADS  Google Scholar 

  61. J. Gea-Banacloche, G. T. Moore, and M. Scully, Proc. SPIE 453, 393 (1984).

    Article  ADS  Google Scholar 

  62. P. Sprangle, C. M. Tang, and C. W. Roberson, Nucl. Instrum. Methods Phys. Res., Sect. A 239, 1 (1985).

    Article  ADS  Google Scholar 

  63. E. Jerby and A. Gover, IEEE J. Quantum Electron. 21, 1041 (1985).

    Article  ADS  Google Scholar 

  64. K.-J. Kim, Nucl. Instrum. Methods Phys. Res., Sect. A 250, 396 (1986).

    Article  ADS  Google Scholar 

  65. J.-M. Wang and L.-H. Yu, Nucl. Instrum. Methods Phys. Res., Sect. A 250, 484 (1986).

    Article  ADS  Google Scholar 

  66. R. Bonifacio, F. Casagrande, and C. Pellegrini, Opt. Commun. 61, 55 (1987).

    Article  ADS  Google Scholar 

  67. S. V. Milton et al., Science 292, 2037 (2001).

    Article  ADS  Google Scholar 

  68. P. Bosco, W. B. Colson, and R. A. Freeman, IEEE J. Quantum Electron. 19, 272 (1983).

    Article  ADS  Google Scholar 

  69. W. Becker and M. S. Zubairy, Phys. Rev. A 25, 2200 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  70. W. Becker and J. K. McIver, Phys. Rev. A 27, 1030 (1983).

    Article  ADS  Google Scholar 

  71. G. Dattoli, J. C. Gallardo, A. Renieri, M. Richetta, and A. Torre, Nucl. Instrum. Methods Phys. Res., Sect. A 237, 93 (1985).

    Article  ADS  Google Scholar 

  72. G. Margaritondo and P. R. Ribic, J. Synchrotron Radiat. 18, 101 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Additional information

Original Russian Text © K.V. Zhukovsky, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2017, No. 2, pp. 29–44.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V. Undulators and generation of X-ray pulses in free-electron lasers with self-amplified spontaneous emission. Moscow Univ. Phys. 72, 128–143 (2017). https://doi.org/10.3103/S0027134917020126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134917020126

Keywords

Navigation