Skip to main content
Log in

Harmonic Generation in Planar Undulators in Single-Pass Free Electron Lasers

  • QUANTUM ELECTRONICS
  • Published:
Russian Physics Journal Aims and scope

The paper presents a theoretical study of the harmonic power evolution in a single-pass free-electron laser (FEL) and a comparison with some of the experimental results. The phenomenological approach which considers the main FEL parameters (current density, the Lorentz factor, electron energy spread, and the beam geometry) provides a description of any undulator. With due regard to the real laser beam parameters, the effect from high-order harmonic radiation and the beam deviation from the undulator axis on the FEL irradiation is investigated. The Bessel coefficients are calculated for the undulator in the presence of the second periodic field. The phenomenological approach provides the free-electron laser simulation experiments at Sorgente Pulsata Auto-amplificata di Radiazione Coerente (SPARC), SPring-8 Angstrom Compact Free-Electron Laser (SACLA) and Linac Coherent Light Source (LCLS). These studies include the high-harmonic generation, a comparison of the emission power evolution with the experimentally obtained data on the harmonic generation including even and odd high-order harmonics, gain and saturation lengths and the respective power. A possible effect from the third harmonic of the planar undulator magnetic field is studied in relation to the FEL irradiation. It is shown that this effect is insignificant even at the magnetic-field harmonic amplitude equaling ~1/10 of the amplitude of the ideal magnetic field in the periodic undulator. It is found that the second-harmonic generation in FEL lasing is rather weak, that is in good agreement with the measurement results as well as the behavior of the high-order harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginzburg, Izv. Akad. Nauk, Fiz., 11, No. 2, 1651 (1947).

    Google Scholar 

  2. H. Motz, W. Thon, and R. N.J. Whitehurst, Appl. Phys., 24, 826 (1953).

    Article  Google Scholar 

  3. B. W.J. McNeil and N. R. Thompson, Nat. Photonics, 4, 814 (2010).

    Article  ADS  Google Scholar 

  4. V. G. Bagrov, G. S. Bisnovatyi-Kogan, V. A. Bordovitsyn, et al., A Theory of Relativistic Particle Radiation [in Russian], Fizmatlit, Moscow (2002), 575 p.

    Google Scholar 

  5. S. C. Bajt and M. A. Wall, PCT No. PCT/US2000/013549 (2000) and PCT No. EP 1198725A1 (2002).

  6. P. Sprangle and R. A. Smith, Phys. Rev. A, 21, No. 1, 293 (1980).

    Article  ADS  Google Scholar 

  7. L.-H. Yu et al., Science, 289, 932 (2000).

    Article  ADS  Google Scholar 

  8. K. V. Zhukovsky, Russ. Phys. J., 60, No. 9, 1630–1637 (2017).

    Article  MathSciNet  Google Scholar 

  9. G. Dattoli, J. Appl. Phys., 84, Nо. 5, 2393–2398 (1998).

  10. G. Dattoli, L. Giannessi, P. L. Ottaviani, and C. Ronsivalle, J. Appl. Phys., 95, 3206–3210 (2004).

    Article  ADS  Google Scholar 

  11. E. A. Schneidmiller and M. V. Yurkov, Phys. Rev. ST Accel. Beams, 15, 080702 (2012).

    Article  ADS  Google Scholar 

  12. G. Dattoli and P.L. Ottaviani, Opt. Commun., 204, No. 1, 283–297 (2002).

    Article  ADS  Google Scholar 

  13. K. Zhukovsky and I. Potapov, Laser Part. Beams, 35, 326 (2017).

    Article  ADS  Google Scholar 

  14. K. Zhukovsky, J. Phys. D: Appl. Phys., 50, 505601 (2017).

    Article  Google Scholar 

  15. K. Zhukovsky, J. Appl. Phys., 122, No. 23, 233103 (2017).

    Article  ADS  Google Scholar 

  16. K. Zhukovsky, Opt. Commun., 418, 57–64 (2018).

    Article  ADS  Google Scholar 

  17. K. V. Zhukovsky, I. A. Potapov, and A. M. Kalitenko, Radiophys. Quant. El., 61, No. 3, 216–231 (2018).

    Article  ADS  Google Scholar 

  18. K. V. Zhukovsky, Vestnik MGU. Ser. 3. Fizika. Astronomiya. No. 4, 26–34 (2018).

  19. K. V. Zhukovsky, Vestnik MGU. Ser. 3. Fizika. Astronomiya. No. 5, 18–25 (2018).

  20. K. V. Zhukovsky, Russ. Phys. J., 61, No. 2, 278–286 (2018).

    Article  Google Scholar 

  21. K. Zhukovsky, EPL, 119, 34002 (2017).

    Article  ADS  Google Scholar 

  22. L. Giannessi et al., Phys. Rev. ST Accel. Beams, 14, 060712 (2011).

    Article  ADS  Google Scholar 

  23. Shigeki Owada et al., J. Synchrotron Rad., 25, 282–288 (2018).

    Article  Google Scholar 

  24. P. Emma et al., Nat. Photonics, 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  25. K. Zhukovsky and A. Kalitenko, J. Synchrotron Rad., 26, 159–169 (2019), DOI: https://doi.org/10.1107/S1600577518012444.

    Article  Google Scholar 

  26. K. Zhukovsky, J. Optics, 20, Nо. 9, 095003 (2018).

  27. D. Ratner et al., Phys. Rev. ST Accel. Beams, 14, 060701 (2011).

    Article  ADS  Google Scholar 

  28. K. Lee, J. Mun, S. Hee Park, et al., Nucl. Instrum. Methods Phys. Res. A, 776, 27–33 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 153–160, February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V., Kalitenko, A.M. Harmonic Generation in Planar Undulators in Single-Pass Free Electron Lasers. Russ Phys J 62, 354–362 (2019). https://doi.org/10.1007/s11182-019-01719-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01719-7

Keywords

Navigation