Skip to main content
Log in

Subbarrier and Overbarrier Electron Transfer through Multilayer Semiconductor Structures

  • Published:
Russian Physics Journal Aims and scope

The transparency coefficients of a semiconductor structure consisting of alternating asymmetric potential barriers and wells, where the Bastard condition is taken into account, are calculated. It is shown that in the structure, an oscillation of the transmission coefficient of electrons depending on their energy is observed, which is caused by the interference of the de Broglie waves coming to the barrier and reflected from the potential barrier. The electronic states of a multilayer semiconductor structure consisting of alternating potential wells and barriers are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Shchuka, Nanoelectronics [in Russian], Fizmatkniga, Moscow (2007).

  2. G. M. Mladenov, V. M. Spivak, E. G. Koleva, and A. V. Bogdan, Nanoelectronics. Introduction to Nanoelectronic Technology [in Russian], Tekhnosfera, Kiev, Sofia (2009).

  3. D. A. Usanov and A. V. Skripal’, Physical Foundations of Nanoelectronics [in Russian], Saratov (2013).

  4. V. P. Dragunov, Foundations of Nanoelectronics [in Russian], Fizmatkniga, Moscow (2006).

    Google Scholar 

  5. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure, Editions de Physique, Les Ulis., France (1988).

  6. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Springer Series in Solid-State Sciences, Heidelberg: Springer Verlag, Berlin (1995); second edition (1997).

  7. I. V. Belyaev, E. I. Golant, and A. B. Pashkovskii, Fiz. Tekh. Poluprovodn., 31, No. 2, 137–144 (1997).

    Google Scholar 

  8. E. I. Golant, and A. B. Pashkovskii, Fiz. Tekh. Poluprovodn., 31, No. 9, 1077–1082 (1997).

    Google Scholar 

  9. E. I. Golant, and A. B. Pashkovskii, Fiz. Tekh. Poluprovodn., 34, No. 2, 334–339 (2000).

    Google Scholar 

  10. E. I. Golant, and A. B. Pashkovskii, Fiz. Tekh. Poluprovodn., 36, No. 3, 330–337 (2002).

    Google Scholar 

  11. A. B. Pashkovskii, Pis’ma Zh. Eksp. Teor. Fiz., 82, Nos. 3–4, 228–233 (2005).

    Google Scholar 

  12. V. F. Elesin, Zh. Eksp. Teor. Fiz., 121, No. 4, 925–932 (2002).

    Google Scholar 

  13. V. F. Elesin, Zh. Eksp. Teor. Fiz., 123, No. 5, 1096–1105 (2003).

    Google Scholar 

  14. V. F. Elesin, Zh. Eksp. Teor. Fiz., 124, No. 2 (8), 379–393 (2003).

    Google Scholar 

  15. V. F. Elesin and I. Yu. Kateev, Fiz. Tekh. Poluprovodn., 42, 586–590 (2008).

    Google Scholar 

  16. V. F. Elesin, Zh. Eksp. Teor. Fiz., 145, No. 6, 1078–1086 (2014).

    Article  Google Scholar 

  17. V. I. Galiev, A. N. Kruglov, A. F. Polupanov, et al., Fiz. Tekh. Poluprovodn., 36, No. 5 , 576–581 (2002).

  18. J. N. Davies, The Physics of Low-Dimensional Semiconductors, Cambridge University (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Rasulov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 8–15, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasulov, R.Y., Rasulov, V.R., Mamadalieva, N.Z. et al. Subbarrier and Overbarrier Electron Transfer through Multilayer Semiconductor Structures. Russ Phys J 63, 537–546 (2020). https://doi.org/10.1007/s11182-020-02067-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02067-7

Keywords

Navigation