Skip to main content
Log in

Peculiarities of an Electrical Explosion of Flat Conductors in the Current Skinning Mode

  • Published:
Russian Physics Journal Aims and scope

The propagation of a nonlinear magnetic-field diffusion wave generated under the condition of an electrical explosion of flat conductors is investigated in the current skinning mode. Using a MIG terrawatt generator, a number of experiments are performed on electrical explosion of a copper foil, 100 μm in thickness and 5 mm in width, at the current amplitude up to 2.5 MA and its rise rate 100 ns. It is shown that under these conditions a plasma channel is formed by approximately 75-th ns from the current onset. The estimations, made considering the magnetic field enhancement on the foil edges, demonstrate that about 70–80 ns are required for the nonlinear magnetic-field diffusion wave to propagate from the foil edge to its center. A good agreement of the experimental data and the estimates suggested a conclusion that the plasma channel formation is due to the convergence of the nonlinear diffusion wave towards the longitudinal foil axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Slutz, C. Olson, and P. Peterson, Phys. Plasmas, 10, 429–437 (2003).

    Article  ADS  Google Scholar 

  2. E. Azizov, S. Alikhanov, E. Velikhov, et al., Plasma Devices and Operations, 12, 123–132 (2004).

    Article  Google Scholar 

  3. W. A. Stygar, M. Cuneo, D. Headley, et al., Phys. Rev. Special Topics-Accelerators and Beams, 10, 030401 (2007).

    Article  ADS  Google Scholar 

  4. W. Stygar, T. Awe, J. Bailey, et al., Phys. Rev. Special Topics-Accelerators and Beams, 18, 110401 (2015).

    Article  ADS  Google Scholar 

  5. A. A. Kim, M. Mazarakis, V. Sinebryukhov, et al., Phys. Rev. Special Topics-Accelerators and Beams, 12, 050402 (2009).

    Article  ADS  Google Scholar 

  6. E. V. Grabovskii, V. V. Aleksandrov, A. N. Gritsuk, et al., in: Abstracts IEEE Pulsed Power and Plasma Science Conf., 224, San Francisco, CA (2013).

  7. K. Struve, J. Corley, D. Johnson, et al., in: Digest of Technical Papers of the 12th IEEE Int. Pulsed Power Conf., 493, Monterey, CA (1999).

  8. V. P. Smirnov, S. V. Zakharov, E. V. Grabovskii, et al., J. Exp. Theor. Phys. Lett., 81, 442–447 (2006).

    Article  Google Scholar 

  9. V. Mokhov, O. Burenkov, A. Buyko, et al., Fusion Eng. Design, 70, 35–43 (2004).

    Article  Google Scholar 

  10. I. R. Lindemuth, Phys. Plasmas, 22, 122712 (2015).

    Article  ADS  Google Scholar 

  11. S. Slutz, M. Herrmann, R. Vesey, et al., Phys. Plasmas, 17, 056303 (2010).

    Article  ADS  Google Scholar 

  12. M. R. Gomez, S. A. Slutz, A. B. Sefkow, et al., Phys. Rev. Lett., 113, 155003 (2014).

    Article  ADS  Google Scholar 

  13. K. C. Yates, B. S. Bauer, S. Fuelling, et al., Phys. Plasmas, 26, 042708 (2019).

    Article  ADS  Google Scholar 

  14. C. Fowler, W. Garn, and R. Caird, J. Appl. Phys., 31, 588–594 (1960).

    Article  ADS  Google Scholar 

  15. A. D. Sakharov, Physics-Uspekhi, 88, 725–734 (1966).

    Google Scholar 

  16. G. Knoepfel, Pulsed High Magnetic Fields, North-Holland Publishing Company, Amsterdam (1970).

    Google Scholar 

  17. Y. N. Bocharov, S. I. Krivosheev, and G. A. Shneerson, Pis’ ma ZhTF, 8, 212–216 (1982).

    Google Scholar 

  18. S. I. Krivosheev, V. V. Titkov, and G. A. Shneerson, Tech. Phys., 42, Iss. 4, 352–366 (1997).

    Article  Google Scholar 

  19. R. Kinslow, High-Velocity Impact Phenomena, Academic Press, N. Y. (1970).

    Google Scholar 

  20. S. Rashleigh and R. Marshall, J. Appl. Phys., 49, 2540–2542 (1978).

    Article  ADS  Google Scholar 

  21. V. E. Fortov, Physics-Uspekhi, 50, 333–353 (2007).

    Article  ADS  Google Scholar 

  22. T. Nash, C. Deeney, G. Chandler, et al., Phys. Plasmas, 11, L65–L68 (2004).

    Article  Google Scholar 

  23. M. D. Knudson, R. Lemke, D. Hayes, et al., J. Appl. Phys., 94, 4420–4431 (2003).

    Article  ADS  Google Scholar 

  24. R. Lemke, M. Knudson, C. Hall, et al., Phys. Plasmas, 10, 1092–1099 (2003).

    Article  ADS  Google Scholar 

  25. S. I. Tkachenko, E. V. Grabovski, A. N. Gribov, et al., Bull. Russ. Acad. Sci.: Physics, 82, 390–393 (2018).

  26. E. V. Grabovskii, V. V. Alexandrov, A. V. Branitskii, et al., IOP Conf. Series: J. Phys. Conf. Series, 946, 012041 (2018).

    Google Scholar 

  27. V. I. Oreshkin and S. A. Chaikovsky, Phys. Plasmas, 19, 022706 (2012).

    Article  ADS  Google Scholar 

  28. V. I. Oreshkin, S. A. Chaikovsky, I. M. Datsko, et al., Phys. Plasmas, 23, 122107 (2016).

    Article  ADS  Google Scholar 

  29. R. Z. Luydaev. Megagaus and Megaampere Pulsed Technology and Applications, Volume 1 [in Russian], VNIIEF, Sarov (1997).

    Google Scholar 

  30. G. A. Shneerson, Sov. Tech. Phys., 18, 419 (1973).

    Google Scholar 

  31. S. A. Chaikovsky, V. I. Oreshkin, I. M. Datsko, et al., Phys. Plasmas, 21, 042706 (2014).

    Article  ADS  Google Scholar 

  32. A. V. Luchinskii, N. A. Ratakhin, V. F. Feduschak, and A. N. Shepelev, Russ. Phys. J., 40, No. 12, 1177–1184 (1997).

    Article  Google Scholar 

  33. V. K. Petin, S. V. Shljakhtun, V. I. Oreshkin and N. A. Ratakhin, Tech. Phys., 53, 776–782 (2008).

    Article  Google Scholar 

  34. S. A. Chaikovsky, V. I. Oreshkin, G. A. Mesyats, et al., Phys. Plasmas, 16, 042701 (2009).

    Article  ADS  Google Scholar 

  35. I. E. Tamm, Fundamentals of the theory of electricity, Mir Publishers, Moscow (1979).

    Google Scholar 

  36. G. A. Shneerson, Fields and Transient Processes in High-Current Apparatus [in Russian], Energoizdat, Leningrad (1981).

    Google Scholar 

  37. A. A.Valuev, I. I. Dikhter, and V. A. Zeigarnik, Zhur. Tekh. Fiz., 48, 2088–2096 (1978).

    Google Scholar 

  38. V. I. Oreshkin, Tech. Phys. Lett., 35, 36–39 (2009).

    Article  ADS  Google Scholar 

  39. K. B. Abramova, N. A. Zlatin, B. P. Peregud, et al., Zhur. Exp. Tekh. Fiz., 69, 2007–2022 (1975).

    ADS  Google Scholar 

  40. A. G. Rousskikh, V. I. Oreshkin, S. A. Chaikovsky, et al., Phys. Plasmas, 15, 102706 (2008).

    Article  ADS  Google Scholar 

  41. R. Baksht, S. Tkachenko, V. Romanova, et al., Tech. Phys., 58, 1129–1137 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Chaikovskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 130–136, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaikovskii, S.A., Oreshkin, V.I., Labetskaya, N.A. et al. Peculiarities of an Electrical Explosion of Flat Conductors in the Current Skinning Mode. Russ Phys J 62, 1235–1242 (2019). https://doi.org/10.1007/s11182-019-01840-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01840-7

Keywords

Navigation