Skip to main content
Log in

Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5−50)×108 A/cm2

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1−16 μm, widths of 1−8 mm, and lengths of 5−11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40−1000 kA and current densities of (5–50) × 108 A/cm2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing method with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Exploding Wires, Ed. by W. G. Chase and H. K. Moore (Plenum, New York, 1962), Vol.2.

  2. D. B. Sinars, Hu Min, K. M. Chandler, T. A. Shelkovenko, S. A. Pikuz, J. B. Greenly, D. A. Hammer, and B. R. Kusse, Phys. Plasmas 8, 216 (2001).

    Article  ADS  Google Scholar 

  3. A. E. Ter-Oganes’yan, S. I. Tkachenko, V. M. Romanova, A. R. Mingaleev, T. A. Shelkovenko, and S. A. Pikuz, Plasma Phys. Rep. 31, 919 (2005).

    Article  ADS  Google Scholar 

  4. A. G. Rousskikh, V. I. Oreshkin, S. A. Chaikovsky, N.A. Labetskaya, A. V. Shishlov, I. I. Beilis, and R. B. Baksht, Phys. Plasmas 15, 102706 (2008).

    Article  ADS  Google Scholar 

  5. S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomenskii, S. A. Pikuz, and A. I. Samokhin, Sov. J. Plasma Phys. 13, 115 (1987).

    Google Scholar 

  6. S. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, K. H. Kwek, S. A. Pikuz, and T. A. Shelkovenko, Phys. Plasmas 8, 3734 (2001).

    Article  ADS  Google Scholar 

  7. V. V. Aleksandrov, E. V. Grabovski, G. G. Zukakishvili, M. V. Zurin, N. N. Komarov, I. V. Krasovskaya, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Rorofeev, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, I. N. Frolov, et al., JETP 97, 745 (2003).

    Article  ADS  Google Scholar 

  8. M. G. Haines, S. V. Lebedev, J. P. Chittenden, F. N. Beg, S. N. Bland, and A. E. Dangor, Phys. Plasmas 7, 1672 (2007).

    Article  ADS  Google Scholar 

  9. D. B. Sinars, M. E. Cuneo, B. Jones, C. A. Coverdale, T. J. Nash, M. G. Mazarakis, J. L. Porter, C. Deeney, D. F. Wenger, R. G. Adams, E. P. Yu, D. E. Bliss, and G. Sarkisov, Phys. Plasmas 12, 056303 (2005).

    Article  ADS  Google Scholar 

  10. T. W. L. Sanford, Laser Part. Beams 19, 541 (2001).

    Article  ADS  Google Scholar 

  11. M. E. Cuneo, D. B. Sinars, E. M. Waisman, D. E. Bliss, W. A. Stygar, R. A. Vesey, R. W. Lemke, I. C. Smith, P. K. Rambo, J. L. Porter, G. A. Chandler, T. J. Nash, M. G. Mazarakis, R. G. Adams, E. P. Yu, et al., Phys. Plasmas 13, 056318 (2006).

    Article  ADS  Google Scholar 

  12. M. E. Cuneo, E. M. Waisman, S. V. Lebedev, J. P. Chittenden, W. A. Stygar, G. A. Chandler, R. A. Vesey, E. P. Yu, T. J. Nash, D. E. Bliss, G. S. Sarkisov, T. C. Wagoner, G. R. Bennett, D. B. Sinars, J. L. Porter, et al., Phys. Rev. E 71, 046406 (2005).

    Article  ADS  Google Scholar 

  13. R. D. McBride, S. A. Slutz, C. A. Jennings, D. B. Sinars, M. E. Cuneo, M. C. Herrmann, R. W. Lemke, M. R. Martin, R. A. Vesey, K. J. Peterson, A. B. Sefkow, C. Nakhleh, B. E. Blue, K. Killebrew, D. Schroen, et al., Phys. Rev. Lett. 109, 135004 (2012).

    Article  ADS  Google Scholar 

  14. J. Wu, L. P. Wang, J. J. Han, M. Li, L. Sheng, Y. Li, M. Zhang, N. Guo, T. S. Lei, and A. C. Qiu, Phys. Plasmas 19, 022702 (2012).

    Article  ADS  Google Scholar 

  15. V. M. Romanova, G. V. Ivanenkov, A. R. Mingaleev, A. E. Ter-Oganes’yan, T. A. Shelkovenko, and S. A. Pikuz, Plasma Phys. Rep. 41, 617 (2015).

    Article  ADS  Google Scholar 

  16. S. A. Slutz, W. A. Stygar, M. R. Gomez, K. J. Peterson, A. B. Sefkow, D. B. Sinars, R. A. Vesey, E. M. Campbell, and R. Betti, Phys. Plasmas 23, 022702 (2016).

    Article  ADS  Google Scholar 

  17. V. L. Kantsyrev, A. S. Chuvatin, A. S. Safronova, L. I. Rudakov, A. A. Esaulov, A. L. Velikovich, I. Shrestha, A. Astanovitsky, G. C. Osborne, V. V. Shlyaptseva, M. E. Weller, S. Keim, A. Stafford, and M. Cooper, Phys. Plasmas 21, 031204 (2014).

    Article  ADS  Google Scholar 

  18. V. S. Sedoi, G. A. Mesyats, V. I. Oreshkin, V. V. Valevich, and L. I. Chemezova, IEEE Trans. Plasma Sci. 27, 845 (1999).

    Article  ADS  Google Scholar 

  19. V. A. Burtsev, N. V. Kalinin, and A. V. Luchinskii, Electric Explosion of Conductors and Its Application in Electrophysical Plants (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  20. V. M. Koval’chuk and Yu. A. Kotov, in High-Power Nanosecond Pulsed Sources of Accelerated Electrons, Ed. by G. A. Mesyats (Nauka, Novosibirsk, 1974), p. 130 [in Russian].

  21. M. Takayuki, N. Matsuo, M. Otsuka, and S. Itoh, Proc. SPIE 75, 75222 (2010).

    Google Scholar 

  22. M. V. Babykin, K. A. Baigarin, A. V. Bartov, Yu. M. Gorbulin, and V. N. Makhov, Sov. J. Plasma Phys. 8, 237 (1982).

    Google Scholar 

  23. K. N. Mitrofanov, V. V. Aleksandrov, E. V. Grabovski, A. N. Gritsuk, I. N. Frolov, A. N. Branitskii, and Ya. N. Laukhin, Plasma Phys. Rep. 43, 444 (2017).

    Article  ADS  Google Scholar 

  24. E. V. Grabovski, P. V. Sasorov, A. P. Shevelko, V. V. Aleksandrov, M. M. Andreev, A. V. Basko, A. N. Branitsky, A. N. Gritsuk, G. S. Volkov, Ya. N. Laukhin, K. N. Mitrofanov, V. G. Novikov, G. M. Oleinik, A. A. Samokhin, I. Yu. Tolstikhina, et al., JETP Lett. 103, 350 (2016).

    Article  ADS  Google Scholar 

  25. T. J. Awe, R. D. McBride, C. A. Jennings, D. C. Lampa, M. R. Martin, D. C. Rovang, S. A. Slutz, M. E. Cuneo, A. C. Owen, D. B. Sinars, K. Tomlinson, M. R. Gomez, S. B. Hansen, M. N. Herrmann, J. L. McKenny, et al., Phys. Rev. Lett. 111, 235005 (2013).

    Article  ADS  Google Scholar 

  26. T. J. Awe, K. J. Peterson, E. P. Yu, R. D. McBride, D. B. Sinars, M. R. Gomez, C. A. Jennings, M. R. Martin, S. E. Rosental, D. G. Schroen, A. B. Sefkow, S. A. Slutz, K. Tomlinson, and R. A. Vesey, Phys. Rev. Lett. 116, 065001 (2016).

    Article  ADS  Google Scholar 

  27. R. D. McBride, S. A. Slutz, R. A. Vesey, M. R. Gomez, A. B. Sefkow, S. B. Hansen, P. F. Knapp, P. F. Schmit, M. Geissel, A. J. Harvey-Thompson, C. A. Jennings, E. C. Harding, T. J. Awe, D. C. Rovang, K. D. Hahn, et al., Phys. Plasmas 23, 012705 (2016).

    Article  ADS  Google Scholar 

  28. L. Atoyan, D. A. Hammer, B. R. Kusse, T. Byvank, A. D. Cahill, J. B. Greenly, S. A. Pikuz, and T. A. Shelkovenko, Phys. Plasmas 23, 022708 (2016).

    Article  ADS  Google Scholar 

  29. D. A. Yager-Elorriaga, P. Zhang, A. M. Steiner, N. M. Jordan, P. C. Campbell, Y. Y. Lau, and R. M. Gilgenbach, Phys. Plasmas 23, 124502 (2016).

    Article  ADS  Google Scholar 

  30. P. Zhang, Y. Hu, H. Yang, J. Sun, L. Wang, P. Cong, and A. Qiu, Phys. Plasmas 23, 033105 (2016).

    Article  ADS  Google Scholar 

  31. V. V. Kuznetsov, V. I. Oreshkin, A. S. Zhigalin, I. A. Kozulin, S. A. Chaikovsky, and A. G. Rousskikh, J. Eng. Thermophys. 20, 240 (2011).

    Article  Google Scholar 

  32. V. I. Oreshkin, A. S. Zhigalin, A. G. Rousskikh, and V. V. Kuznetsov, J. Eng. Thermophys. 22, 288 (2013).

    Article  Google Scholar 

  33. A. S. Zhigalin, A. G. Rousskikh, V. I. Oreshkin, S. A. Chaikovsky, N. A. Ratakhin, K. V. Khishchenko, and R. B. Baksht, J. Phys. Conf. Ser. 653, 012146 (2015).

    Article  Google Scholar 

  34. R. B. Baksht, A. G. Rousskikh, A. S. Zhigalin, V. I. Oreshkin, and A. P. Artyomov, Phys. Plasmas 22, 103521 (2015).

    Article  ADS  Google Scholar 

  35. A. S. Zhigalin, A. G. Rousskikh, V. I. Oreshkin, and R. B. Baksht, J. Phys. Conf. Ser. 830, 012033 (2017).

    Article  Google Scholar 

  36. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, and D. A. Hammer, Rev. Sci. Instrum. 72, 667 (2001).

    Article  ADS  Google Scholar 

  37. T. A. Shelkovenko, D. A. Chalenski, K. M. Chandler, J. D. Douglass, J. B. Greenly, D. A. Hammer, B. R. Kusse, R. D. McBride, and S. A. Pikuz, Rev. Sci. Instrum. 77, F521 (2006).

    Article  Google Scholar 

  38. L. Atoyan, T. A. Shelkovenko, S. A. Pikuz, D. A. Hammer, T. Byvank, J. B. Greenly, and J. B. Kusse, Rev. Sci. Instrum. 88, 113502 (2017).

    Article  ADS  Google Scholar 

  39. P. F. Knapp, J. B. Greenly, P. A. Gourdain, C. L. Hoyt, M. R. Martin, S. A. Pikuz, C. E. Seyler, T. A. Shelkovenko, and D. A. Hammer, Phys. Plasmas 17, 012704 (2010).

    Article  ADS  Google Scholar 

  40. V. I. Oreshkin, R. B. Baksht, N. A. Ratakhin, A. V. Shishlov, K. V. Khishchenko, P. R. Levashov, and I. I. Beilis, Phys. Plasmas 11, 4771 (2004).

    Article  ADS  Google Scholar 

  41. G. S. Sarkisov, P. V. Sasorov, K. W. Struve, D. H. McDaniel, A. N. Gribov, and G. M. Oleinik, Phys. Rev. E 66, 046413 (2002).

    Article  ADS  Google Scholar 

  42. G. V. Ivanenkov, A. R. Mingaleev, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, W. Stepniewski, and D. A. Hammer, JETP 87, 663 (1998).

    Article  ADS  Google Scholar 

  43. S. A. Pikuz, T. A. Shelkovenko, J. B. Greenly, Y. S. Dimant, and D. A. Hammer, Phys. Rev. Lett. 83, 4313 (1999).

    Article  ADS  Google Scholar 

  44. T. A. Shelkovenko, S. A. Pikuz, J. D. Douglass, I. C. Blesener, J. B. Greenly, R. D. McBride, D. A. Hammer, and B. R. Kusse, Phys. Plasmas 14, 102702 (2007).

    Article  ADS  Google Scholar 

  45. D. B. Sinars, T. A. Shelkovenko, S. A. Pikuz, J. B. Greenly, and D. A. Hammer, Phys. Plasmas 7, 1555 (2000).

    Article  ADS  Google Scholar 

  46. T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, A. R. Mingaleev, A. E. Ter-Oganes’yan, L. Atoyan, and D. A. Hammer, XLIV International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2017, Book of Abstracts, p. 134.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Shelkovenko.

Additional information

Original Russian Text © T.A. Shelkovenko, S.A. Pikuz, I.N. Tilikin, A.R. Mingaleev, L. Atoyan, D.A. Hammer, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 2, pp. 193–202.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelkovenko, T.A., Pikuz, S.A., Tilikin, I.N. et al. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5−50)×108 A/cm2. Plasma Phys. Rep. 44, 236–244 (2018). https://doi.org/10.1134/S1063780X18020113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18020113

Navigation