Skip to main content
Log in

Long-period states of a crystal finite-size-particle system

  • Published:
Russian Physics Journal Aims and scope

A one-dimensional model is proposed, which ensures description of origination and main properties of longperiod and incommensurate phases of crystal having complex structure and consists of comparatively rigid “atomic clusters”. In the case where reciprocal rotations of theses clusters are considerably large, not only translational but also rotational degrees of freedom have to be taken into account for the clusters. It is consideration of the rotational degrees of freedom which might provide for formation of long-period states and development of a number of physical effects, such as a variety of soliton solutions (of domain walls) and their non-trivial dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Kunin, The Theory of Elastic Media with Microstructure: Non-Local Elasticity Theory [in Russian], Moscow, Fizmatizdat (1975).

    Google Scholar 

  2. G. A. Maugin, Phil. Trans. Roy. Soc. Lond. A, 365, 1367–1395 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  3. R. D. Gauthier, Mechanics of Micropolar Media (Eds. O. Brulin and R. K. T. Hsieh), Singapore: World Scientific (1982).

    Google Scholar 

  4. C. A. Felippa, Int. J. Solid Struct., 29, 2709–2721 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Shahinpoor, Quart. Appl. Math., 31, 257–261 (1973).

    MATH  MathSciNet  Google Scholar 

  6. G. Capriz, Continua with Microstructure, New York, Springer Verlag (1989). – 92 p.

    MATH  Google Scholar 

  7. I. A. Kunin Elastic Media with Microstructure, V. 1, One-Dimensional Models, New York, Springer Verlag (1982–1983).

    Google Scholar 

  8. I. A. Kunin Elastic Media with Microstructure, V. 2, One-Dimensional Models, New York, Springer Verlag (1982–1983).

    Google Scholar 

  9. Y. Chen and J. D. Lee, Int. J. Eng. Sci., 41, 871–886 (2003).

    Article  Google Scholar 

  10. Incommensurate Phases in Dielectrics: Part 1, Fundamentals (Eds. R. Blinc and A.P. Levanyuk), V. 14.1 and V. 14.2, Amsterdam, North-Holland (1986).

  11. X. H. Liu, N. Satoh, G. Kudo, et al. J. Korean Phys. Soc., 32, 584–586 (1998).

    Google Scholar 

  12. T. Shigenari, E. Kojima, Y. Ino, and K. Abe, Phys. Rev. Lett., 66, 2112–2115 (1991).

    Article  ADS  Google Scholar 

  13. S. Watanabe and Y. Koyama, Phys. Rev. B, 66, 134102–134109 (2002).

    Article  ADS  Google Scholar 

  14. R. Matzdorf, Kimura T. Ismail, et al., Ibid., 65, 085404–085409 (2002).

    Google Scholar 

  15. O. Chmaissem, et al., Ibid., 62, 14197–14206 (2000).

    Google Scholar 

  16. M. Ichikawa, D. Amasaki, T. Gustafsson, and I. Olovsson, Ibid., 64, 100101–100104 (2001).

    Google Scholar 

  17. A. Alderson and K. E. Evans, Phys. Rev. Lett., 89, 225503–225506 (2002).

    Article  ADS  Google Scholar 

  18. M. B. Smirnov, Phys. Rev. B, 59, 4036–4043 (1999).

    Article  ADS  Google Scholar 

  19. M. B. Smirnov and A. P. Mirgorodsky, Phys. Rev. Lett., 78, 2413–2416 (1997).

    Article  ADS  Google Scholar 

  20. H. Kimizuka, H. Kaburaki, and Y. Kogure, Ibid., 84, 5548–5551 (2000).

    Google Scholar 

  21. M. T. Dove, et al., Ibid., 78, 1070–1073 (1997).

    Google Scholar 

  22. I. P. Swainson and M. T. Dove, Ibid., 71, 193–196 (1993).

    Google Scholar 

  23. Z. Y. Chen and M. B. Walker, Phys. Rev. B, 43, 5634–5648 (1991).

    Article  ADS  Google Scholar 

  24. S. V. Dmitriev, A. A. Vasiliev, and N. Yoshikawa, Recent Res. Devel. Physics, 4, 267–286 (2003).

    Google Scholar 

  25. T. Shigenari, S.V. Dmitriev, K. Abe, et al., Ferroelectrics, 240, 147–154 (2000).

    Article  Google Scholar 

  26. S. V. Dmitriev, M. Yajima, Y. Makita, et al., Progress in Theoretical Physics. Supplement, 138, 243–244 (2000).

    Article  ADS  Google Scholar 

  27. S. V. Dmitriev, M. Yajima, Y. Makita, et al., J. Phys. Soc. Jpn., 70, 428–436 (2001).

    Article  ADS  Google Scholar 

  28. T. Shigenari, K. Abe, S. V. Dmitriev, et al., Ferroelectrics, 259, 103–108 (2001).

    Article  Google Scholar 

  29. D. A. Semagin, S. V. Dmitriev, K. Abe, et al., Ibid., 268, 227–232 (2002).

    Google Scholar 

  30. S. V. Dmitriev, A. A. Vasiliev, A. E. Miroshnichenko, et al., Ibid., 283, 127–139 (2003).

    Google Scholar 

  31. D. A. Semagin, S. V. Dmitriev, K. Abe, and T. Shigenari, Ibid., 283, 141–147 (2003).

    Google Scholar 

  32. D. A. Semagin, S. V. Dmitriev, K. Abe, and T. Shigenari, Rus. J. Phys. Chem., 77, 30–33 (2003).

    Google Scholar 

  33. S. V. Dmitriev, D. A. Semagin, T. Shigenari, et al., Phys. Rev. B, 68, 052101–052104 (2003).

    Article  ADS  Google Scholar 

  34. D. A. Semagin, T. Shigenari, S. V. Dmitriev, and K. Abe, Phys. Stat. Sol. (c), 1, 3057–3060 (2004).

    Article  Google Scholar 

  35. S. V. Dmitriev, K. Abe, and T. Shigenari, J. Phys. Soc. Jpn., 65, 3938–3944 (1996).

    Article  ADS  Google Scholar 

  36. S. V. Dmitriev, T. Shigenari, and K. Abe, Ibid., 66, 2732–2736 (1997).

    Google Scholar 

  37. V. S. Demidenko, A. I. Potekaev, V. I. Simakov, and S. A. Volodin, Structural Phase transition in Metal Systems, Tomsk, TSU Publishers (1992).

    Google Scholar 

  38. A. I. Potekaev, I. I. Naumov, V. V. Kulagina, et al., Natural Long-Period Nanostructures (Ed. A. I. Potekaev) [in Russian], Tomsk, NTL Publishers (2002).

    Google Scholar 

  39. A. I. Potekaev, A. A. Klopotov, E. V. Kozlov, and V. V. Kulagina, Low-Stability Pre-Transitional Structures in Titanium Nickelide [in Russian], Tomsk, NTL Publishers (2004).

    Google Scholar 

  40. A. I. Potekaev, Russ. Phys. J., No. 6, 549–562 (1995).

  41. A. I. Potekaev, Ibid., No. 6, 521‒533 (1996).

  42. V. V. Kulagina and V. F. Dudarev, Ibid., No. 6, 493‒497 (2000).

  43. V. V. Kulagina, Ibid., No. 2, 151‒159 (2001).

  44. V. V. Kulagina, S. V. Eremeev, and A. I. Potekaev, Ibid., No. 2, 122‒130 (2005).

  45. A. A. Popov and V. N. Udodov, Ibid., No. 9, 853‒859 (1999).

  46. N. S. Golosov and A. I. Potekaev, Fiz. Met. Metalloved., 46, No. 4, 762–771 (1978).

    Google Scholar 

  47. A. I. Potekaev, N. S. Golosov, and V. E. Egorushkin, Phys. Stat. Sol. (a), 98, 345–349 (1986).

    Article  Google Scholar 

  48. A. I. Potekaev, Phys. Stat. Sol. (a), 134, 317–334 (1992).

    Article  Google Scholar 

  49. V. N. Udodov, A. I. Potekaev, A. A. Popov, et al., Simulations of Phase Transitions in Fine-Sized defect nanostructures [in Russian], Abakan, Khakassiya University Publishers (2008).

    Google Scholar 

  50. S. V. Dmitriev, N. N. Medvedev, R. R. Mulukov, et al., Russ. Phys. J., No. 8, 858‒865 (2008).

  51. S. V. Dmitriev, A. A. Nazarov, A. I. Potekaev, et al., Ibid., No. 2, 132‒137 (2009).

  52. J. J. M. Slot and T. Janssen, Physica D, 32, 27–71 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  53. G. H. F Van Raaij, K. J. H. Van Bemmel, and T. Janssen, Phys. Rev. B, 62, 3751–3765 (2000).

    Article  ADS  Google Scholar 

  54. Y. Ishibashi, J. Phys. Soc. Jpn., 60, 212–218 (1991).

    Article  ADS  Google Scholar 

  55. J. Hlinka, H. Orihara, and Y. Ishibashi, Ibid., 67, 3488–3492 (1998)..

    Google Scholar 

  56. Y. Ishibashi and J. Hlinka, Ibid., 27‒28 (1991).

  57. J. Hlinka, M. Iwata, and Y. J. Ishibashi, Phys. Soc. Jpn., 68, 126–133 (1999).

    Article  ADS  Google Scholar 

  58. J. Hlinka, H. Orihara, T. Nagaya, and Y. Ishibashi, Ferroelectrics, 219, 251–257 (1998).

    Article  Google Scholar 

  59. J. Hlinka and Y. Ishibashi, J. Phys. Soc. Jpn, 67, 2327–2329 (1998).

    Article  ADS  Google Scholar 

  60. C. Zhong. and Q. Jiang, J. Phys.: Condens. Matter, 14, 8605–8612 (2002).

    Article  ADS  Google Scholar 

  61. J. F. R. Archilla, P. L. Christiansen, and Yu. B. Gaididei, Phys. Rev. E, 65, 16609–16614 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  62. T. Janssen and J. A. Tjon, Phys. Rev. B, 25, 3767–3785 (1982).

    Article  ADS  Google Scholar 

  63. S. V. Dmitriev, T. Shigenari, A. A. Vasiliev, and K. Abe, Ibid., 55, 8155–8164 (1997).

    Google Scholar 

  64. S. V. Dmitriev , T. Shigenari, S. M. Volkova, et al., Comp. Mater. Sci., 13, 227–231 (1999).

    Article  Google Scholar 

  65. M. P. Kashchenko and V. P. Vereschagin, Sov. Phys. J., No. 8, 592–595 (1989).

  66. M. P. Kashchenko, V. V. Letuchev, S. V. Konovalov, and S. V. Neskromnov, Fiz. Met. Metalloved., 76, No.1, 90–101 (1993).

    Google Scholar 

  67. V. V. Letuchev, V. P. Vereshchagin, I. V. Alexina, and M. P. Kashchenko, J. Phys. (Fr), 5, No. 12, 151–156 (1995).

    Google Scholar 

  68. M. P. Kashchenko, ArXiv: cond-mat/0601569 v3, 4 Feb 2006.

  69. M. P. Kashchenko and V. G. Chascshina, Fiz. Met. Metalloved., 105, No. 6, 571–577 (2008).

    Google Scholar 

  70. S. V. Dmitriev, K. Abe, and T. Shigenari, Physica D, 147 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Potekaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 68–82, June, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitriev, S.V., Potekaev, A.I. & Samsonov, A.V. Long-period states of a crystal finite-size-particle system. Russ Phys J 52, 622–639 (2009). https://doi.org/10.1007/s11182-009-9274-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-009-9274-8

Keywords

Navigation