Skip to main content
Log in

Interaction of polyampholytic hydrogels based on partially hydrolyzed polyacrylamide with divalent metals

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The sorption capacity of polyampholytic hydrogels prepared from partially hydrolyzed Polyacrylamide and ethylenediamine, 1,3-diaminopropane and 1,4-diaminobutane, with respect to divalent metal ions was studied. The amine numbers of the synthesized polyampholytic hydrogels were determined and amounted to 85–93 (mg of HCl) g−1. The parameters of the polymer network and the mixing energies of the polyampholytic hydrogels and water were calculated (0.835–1.07 kJ mol−1), which correlate with the sorption capacity of the hydrogels. The hydrogel based on partially hydrolyzed polyacrylamide and 1,4-diaminobutane is characterized by the highest sorption capacity. The experimental data on equilibrium sorption are reliably described by the Langmuir model. The divalent metal ion forms coordination compounds with the polyampholytic hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Arora, Mater. Today: Proc., 2019, 18, 4745; DOI: https://doi.org/10.1016/j.matpr.2019.07.462.

    CAS  Google Scholar 

  2. G. I. Gusev, A. A. Gushchin, V. A. Grinevich, D. V. Filippov, E. A. Moskalenko, M. A. Shilke, Russ. J. Phys. Chem. (Int. Ed.), 2021, 95, 389; DOI: https://doi.org/10.31857/S0044453721020102.

    Article  CAS  Google Scholar 

  3. G. Zhou, J. Luo, Liu Ch, Water Res., 2016, 89, 151; DOI: https://doi.org/10.1016/j.watres.2015.11.053.

    Article  CAS  PubMed  Google Scholar 

  4. F. Luo, T. L. Sun, T. Nakajima, Adv. Mater., 2015, 27, 2722; DOI: https://doi.org/10.1002/adma.201500140.

    Article  CAS  PubMed  Google Scholar 

  5. T. A. Krasnova, A. K. Gorelkina, M. P. Kirsanov, Russ. Ecology Industry Russia (Int. Ed.), 2018, 22, 44; DOI: https://doi.org/10.18412/1816-0395-2018-1-44-49.

    Article  Google Scholar 

  6. E. Elsharma, A. Saleh, W. Abou-Elmagd, E. Metwally, T. Siyam Int. J. Biol. Macromol., 2019, 136, 1273; DOI: https://doi.org/10.1016/j.ijbiomac.2019.06.081.

    Article  CAS  Google Scholar 

  7. M. Martinez, A. Chattah, G. Monti, Polymer, 2008, 49, 5482; DOI: https://doi.org/10.1016/j.polymer.2008.10.011.

    Article  Google Scholar 

  8. R. Molinari, P. Argurio, T. Poerio, Desalination, 2004, 162, 217; DOI: https://doi.org/10.1016/S0011-9164(04)00045-1.

    Article  CAS  Google Scholar 

  9. M. Hajibeygi, S. Shafiei-Navid, M. Shabanian, H. Vahabi, Appl. Clay Sci., 2018, 157, 165; DOI: https://doi.org/10.1007/s00726-012-1236-8.

    Article  CAS  Google Scholar 

  10. T. G. Khonina, A. P. Safronov, M. V. Ivanenko, O. N. Chupakhin, Russ. Chem. Bull., 2014, 63, 1639; DOI: https://doi.org/10.1007/s11172-014-0647-y.

    Article  CAS  Google Scholar 

  11. K. O. Osetrov, M. V. Uspenskaya, R. O. Olekhnovich, I. E. Strelnikova, Russ. Chem. Bull., 2022, 71, 557.

    Article  CAS  Google Scholar 

  12. G. Zhou, J. Luo, Liu Ch., L. Chu, J. Ma, Y. Tang, Z. Zeng, Sh. Luo, Water Res., 2016, 89, 151; DOI: https://doi.org/10.1016/j.watres.2015.11.053.

    Article  CAS  PubMed  Google Scholar 

  13. L. Stephanie, Haag, Matthew T. Bernards, Polyampholyte Hydrogels in Biomedical Applications Gels., 2017, 3; 41; DOI: https://doi.org/10.3390/gels3040041.

    Google Scholar 

  14. V. A. Lipin, A. N. Evdokimov, T. A. Sustavova, Yu. A. Petrova, Russ. J. Phys. Chem., 2022, 96, 645; DOI: https://doi.org/10.31857/S0044453722030165.

    Article  CAS  Google Scholar 

  15. A. I. Vezentsev, N. M. Gorbunova, P. V. Sokolovsky, Russ. Chem. Bull., 2022, 71, 651.

    Article  CAS  Google Scholar 

  16. Pat. 2765637 RF; Byul. Izobret. [Invention Bulletin], 2022, 4 (in Russian).

  17. V. A. Lipin, T. A. Sustavova, Yu. A. Petrova, Fibre Chem., 2021, 53, 11; DOI: https://doi.org/10.26456/vtchem2020.4.17.

    Article  CAS  Google Scholar 

  18. J. St. Kenyeres, V. Ursu, J. Polym. Sci. A. Polym. Chem., 1980, 18, 275; DOI: https://doi.org/10.1002/pol.1980.170180126.

    Article  CAS  Google Scholar 

  19. ASTM D2074-07(2019). Standard test methods for total, primary, secondary, and tertiary amine values of fatty amines by alternative indicator method, DOI: https://doi.org/10.1520/D2074-07R19.

  20. I. V. Zykova, D. S. Kashin, Colloquium J., 2019, 40, 44–46 (in Russian).

    Google Scholar 

  21. S. Kim, C. W. Cho, M. H. Song, J. K. Bediako, Y. S. Yun, Y. E. Choi, Clean Techn. Environ. Policy, 2018, 20, 2191–2199; DOI: https://doi.org/10.1007/s10098-018-1542-2.

    Article  CAS  Google Scholar 

  22. A. R. Khokhlov, S. G. Starodubtzev, V. V. Vasilevskaya, Conformational, Adv. Polym. Sci., 1993, 109, 125; DOI: https://doi.org/10.1007/3-540-56791-7_3.

    Google Scholar 

  23. F. Borges, G. Papavasiliou, F. Teymour, Biomacromolecules, 2020, 21, 5104–5118; DOI: https://doi.org/10.1021/acs.biomac.0c01256.

    Article  CAS  PubMed  Google Scholar 

  24. N. Richbourg, N. Peppas, Prog. Polym. Sci., 2017, 105, 101243; DOI: https://doi.org/10.1016/j.progpolymsci.2020.101243.

    Article  Google Scholar 

  25. S. Ekici, G. Guntekin, Sep. Sci. Technol., 2018, 53, 1777; DOI: https://doi.org/10.1080/01496395.2018.1442478.

    Article  CAS  Google Scholar 

  26. T. Rehman, L. Shah, N. S. Khattak, A. Khan, N. Rehman, S. Alam, Superabsorbent Hydrogels for Heavy Metal Removal, 2019, pp. 1–12.

  27. A. A. Inyinbor, F. A. Adekola, G. A. Olatunji, Water Res., 2016, 15, 14; DOI: https://doi.org/10.1016/j.wri.2016.06.001.

    Google Scholar 

  28. P. S. Kumar, K. Kirthika, J. Eng. Sci. Technol., 2009, 4, 351; DOI: https://doi.org/10.3103/S1063455X17020096.

    Google Scholar 

  29. L. Cheng, W. Li, Y. Li, Y. Yang, Y. Li, Y. Cheng, D. Song, J. Therm. Anal. Calorim., 2018, 135, 2697; DOI: https://doi.org/10.1007/s10973-018-7595-y.

    Article  Google Scholar 

  30. X. Han, J. Feng, F. Dong, X. Zhang., H. Liu, Y. Hu, Mol. Phys., 2014, 112, 2052; DOI: https://doi.org/10.1080/00268976.2014.882523.

    Google Scholar 

  31. H. An, C. Lu, P. Wang, W. Li, Y. Tan, K. Xu, C. Liu, Polym. Bull., 2011, 67, 148; DOI: https://doi.org/10.1007/s00289-011-0465-4.

    Article  Google Scholar 

  32. S. Kudaibergenov, Polyampholytes: Synthesis, Characterization and Application, New York, Springer, 2002, 220 pp; DOI: https://doi.org/10.1007/978-1-4615-0627-0.

    Book  Google Scholar 

  33. S.-J. Hong, H.-J. Mun, B.-J. Kim, Y.-S. Kim, Micromachines, 2021, 12, 1168; DOI: https://doi.org/10.3390/mi12101168.

    Article  PubMed  PubMed Central  Google Scholar 

  34. K. H. Wu, Y. R. Wang, W. H. Hwu, Polym. Degrad. Stab., 2003, 79, 195; DOI: https://doi.org/10.1016/S0141-3910(02)00261-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Poshvina.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Based on the materials of the XVIII International Research and Development Conference “Novel Polymeric Composites. Mikitaev Readings” (July 4–9, 2022; p. Elbrus, Kabardino-Balkarian Republic, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 6, pp. 1299–1306, June, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipin, V.A., Poshvina, T.A. & Petrova, Y.A. Interaction of polyampholytic hydrogels based on partially hydrolyzed polyacrylamide with divalent metals. Russ Chem Bull 72, 1299–1306 (2023). https://doi.org/10.1007/s11172-023-3905-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3905-z

Key words

Navigation