Skip to main content
Log in

Synthesis of dicationic hetarylmethylimidazolium salts via the reaction of N, N′-diaryl-4-chloromethylimidazolium chlorides with N-heterocycles

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction between N, N′-diaryl-4-chloromethylimidazolium chlorides and N-nucleophiles, viz. various azoles and azines, which proceeds via nucleophilic substitution of the chlorine atom in the chloromethyl group and leads to new dicationic 4-hetarylmethylimidazolium salts, was investigated. This reaction is reversible, whereas the yield of product of the nucleophilic substitution depends significantly on the structure of heterocyclic nucleophile and the nature of used solvent. A series of new dicationic 4-hetarylmethylimidazolium salts was obtained, and they are of interest as promising components of ionic liquids and precursors of N-heterocyclic carbenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Welton, Coord. Chem. Rev., 2004, 248, 2459; DOI: https://doi.org/10.1016/j.ccr.2004.04.015.

    Article  CAS  Google Scholar 

  2. S. Wang, X. Wang, Angew. Chem., Int. Ed., 2016, 55, 2308; DOI: https://doi.org/10.1002/anie.201507145.

    Article  CAS  Google Scholar 

  3. H. Ullah, C. D. Wilfred, M. S. Shaharun, Sep. Sci. Technol., 2019, 54, 559; DOI: https://doi.org/10.1080/01496395.2018.1505913.

    Article  CAS  Google Scholar 

  4. V. M. Chernyshev, O. V. Khazipov, D. B. Eremin, E. A. Denisova, V. P. Ananikov, Coord. Chem. Rev., 2021, 437, 213860; DOI: https://doi.org/10.1016/j.ccr.2021.213860.

    Article  CAS  Google Scholar 

  5. Z. Karimi, A. Hassanpour, S. Kangari, A. Marjani, Russ. Chem. Bull., 2022, 71, 1194; DOI: https://doi.org/10.1007/s11172-022-3520-4.

    Article  CAS  Google Scholar 

  6. M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Chem. Rev., 2017, 117, 7190; DOI: https://doi.org/10.1021/acs.chemrev.6b00504.

    Article  CAS  PubMed  Google Scholar 

  7. V. A. Azov, K. S. Egorova, M. M. Seitkalieva, A. S. Kashin, V. P. Ananikov, Chem. Soc. Rev., 2018, 47, 1250; DOI: https://doi.org/10.1039/C7CS00547D.

    Article  CAS  PubMed  Google Scholar 

  8. L. Benhamou, E. Chardon, G. Lavigne, S. Bellemin-Laponnaz, V. César, Chem. Rev., 2011, 111, 2705; DOI: https://doi.org/10.1021/cr100328e.

    Article  CAS  PubMed  Google Scholar 

  9. T. Scattolin, S. P. Nolan, Trends Chem., 2020, 2, 721; DOI: https://doi.org/10.1016/j.trechm.2020.06.001.

    Article  CAS  Google Scholar 

  10. P. Bellotti, M. Koy, M. N. Hopkinson, F. Glorius, Nat. Rev. Chem., 2021, 5, 711; DOI: https://doi.org/10.1038/s41570-021-00321-1.

    Article  CAS  PubMed  Google Scholar 

  11. M. Koy, P. Bellotti, M. Das, F. Glorius, Nat. Catal., 2021, 4, 352; DOI: https://doi.org/10.1038/s41929-021-00607-z.

    Article  CAS  Google Scholar 

  12. V. A. Burilov, I. M. Bogdanov, R. I. Garipova, A. A. Volodina, D. A. Mironova, V. G. Evtugyn, S. E. Solovieva, I. S. Antipin, Russ. Chem. Bull., 2022, 71, 131; DOI: https://doi.org/10.1007/s11172-022-3386-5.

    Article  CAS  Google Scholar 

  13. K. S. Egorova, E. G. Gordeev, V. P. Ananikov, Chem. Rev., 2017, 117, 7132; DOI: https://doi.org/10.1021/acs.chemrev.6b00562.

    Article  CAS  PubMed  Google Scholar 

  14. A. N. Vereshchagin, N. A. Frolov, K. S. Egorova, M. M. Seitkalieva, V. P. Ananikov, Int. J. Mol. Sci., 2021, 22, 6793; DOI: https://doi.org/10.3390/ijms22136793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. E. Peris, Chem. Rev., 2018, 118, 9988; DOI: https://doi.org/10.1021/acs.chemrev.6b00695.

    Article  CAS  PubMed  Google Scholar 

  16. F. Nahra, D. J. Nelson, S. P. Nolan, Trends Chem., 2020, 2, 1096; DOI: https://doi.org/10.1016/j.trechm.2020.10.003.

    Article  CAS  Google Scholar 

  17. V. V. Chesnokov, M. A. Shevchenko, S. B. Soliev, V. A. Tafeenko, V. M. Chernyshev, Russ. Chem. Bull., 2021, 70, 1281; DOI: https://doi.org/10.1007/s11172-021-3212-5.

    Article  CAS  Google Scholar 

  18. D. V. Pasyukov, A. Y. Chernenko, I. V. Lavrentev, V. A. Baydikova, M. E. Minyaev, O. A. Starovoytova, V. M. Chernyshev, Russ. Chem. Bull., 2022, 71, 993; DOI: https://doi.org/10.1007/s11172-022-3501-7.

    Article  CAS  Google Scholar 

  19. D. V. Pasyukov, A. Y. Chernenko, K. E. Shepelenko, V. V. Kutyrev, V. N. Khrustalev, V. M. Chernyshev, Mendeleev Commun., 2021, 31, 176; DOI: https://doi.org/10.1016/j.mencom.2021.03.010.

    Article  CAS  Google Scholar 

  20. D. V. Pasyukov, M. A. Shevchenko, K. E. Shepelenko, O. V. Khazipov, J. V. Burykina, E. G. Gordeev, M. E. Minyaev, V. M. Chernyshev, V. P. Ananikov, Angew. Chem., Int. Ed., 2022, 61, e202116131; DOI: https://doi.org/10.1002/anie.202116131.

    CAS  Google Scholar 

  21. V. M. Chernyshev, E. A. Denisova, D. B. Eremin, V. P. Ananikov, Chem. Sci., 2020, 11, 6957; DOI: https://doi.org/10.1039/D0SC02629H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. CrysAlisPro., Version 1.171.42, Rigaku Oxford Diffraction, 2022.

  23. G. M. Sheldrick, Acta Crystallogr., Sect. A, 2015, 71, 6; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  Google Scholar 

  24. G. M. Sheldrick, Acta. Crystallogr., Sect. C, 2015, 71, 6; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  Google Scholar 

  25. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. J. Puschmann, Appl. Crystallogr., 2009, 42, 113; DOI: https://doi.org/10.1107/S0021889808042726.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Chernyshev.

Additional information

The authors are grateful to Academician of the Russian Academy of Sciences V. P. Ananikov for a fruitful discussion of the results reported herein and valuable comments.

This work was financially supported by the Russian Science Foundation (Project No. 22-23-00304).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 5, pp. 1225–1232, May, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, M.A., Pasyukov, D.V., Tkachenko, Y.N. et al. Synthesis of dicationic hetarylmethylimidazolium salts via the reaction of N, N′-diaryl-4-chloromethylimidazolium chlorides with N-heterocycles. Russ Chem Bull 72, 1225–1232 (2023). https://doi.org/10.1007/s11172-023-3893-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3893-z

Key words

Navigation