Skip to main content
Log in

Synthesis and structures of 4,5-dimethyl-1,3-bis(pyridin-2-ylmethyl)-1H-imidazolium chloride and 1,1′-bis(pyridin-2-ylmethyl)-2,2′-bis(4,5-dimethylimidazole)

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

4,5-Dimethyl-1,3-bis(pyridin-2-ylmethyl)-1H-imidazolium chloride (1) was synthesized and characterized by IR and NMR spectroscopy and X-ray diffraction. An attempt to prepare the free tridentate N-heterocyclic carbene pincer ligand by the reaction of 1 with KN(SiMe3)2 resulted in the formation of 1,1′-bis(pyridin-2-ylmethyl)-2,2′-bis(4,5-dimethylimidazole) as a product of dimerization of the target carbene followed by the rearrangement accompanied by the elimination of dipyridylethane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. E. Hahn, M. C. Jahnke, Angew. Chem., Int. Ed., 2008, 47, 3122; DOI: https://doi.org/10.1002/anie.200703883.

    Article  CAS  Google Scholar 

  2. W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290; DOI: https://doi.org/10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  3. E. A. B. Kantchev, C. J. O’Brien, M. G. Organ, Angew. Chem., Int. Ed., 2007, 46, 2768; DOI: https://doi.org/10.1002/anie.200601663.

    Article  CAS  Google Scholar 

  4. M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature, 2014, 510, 485; DOI: https://doi.org/10.1038/nature13384.

    Article  CAS  PubMed  Google Scholar 

  5. S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev., 2009, 109, 3612; DOI: https://doi.org/10.1021/cr900074m.

    Article  PubMed  CAS  Google Scholar 

  6. W. J. Sommer, M. Weck, Coord. Chem. Rev., 2007, 251, 860; DOI: https://doi.org/10.1016/j.ccr.2006.07.004.

    Article  CAS  Google Scholar 

  7. D. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev., 2015, 115, 9307; DOI: https://doi.org/10.1021/acs.chemrev.5b00060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. B. Alyabyev, I. P. Beletskaya, Russ. Chem. Rev., 2020, 89, 491; DOI: https://doi.org/10.1070/RCR4901.

    Article  CAS  Google Scholar 

  9. I. P. Beletskaya, C. Nájera, M. Yus, Russ. Chem. Rev., 2020, 89, 1074; DOI: https://doi.org/10.1070/RCR4953.

    Article  CAS  Google Scholar 

  10. O. Schuster, L. Yang, H. G. Raubenheimer, M. Albrecht, Chem. Rev., 2009, 109, 3445; DOI: https://doi.org/10.1021/cr8005087.

    Article  CAS  PubMed  Google Scholar 

  11. D. J. Nelson, S. P. Nolan, Chem. Soc. Rev., 2013, 42, 6723; DOI: https://doi.org/10.1039/C3CS60146C.

    Article  CAS  PubMed  Google Scholar 

  12. P. L. Arnold, I. J. Casely, Chem. Rev., 2009, 109, 3599; DOI: https://doi.org/10.1021/cr8005203

    Article  CAS  PubMed  Google Scholar 

  13. M. Poyatos, J. A. Mata, E. Peris, Chem. Rev., 2009, 109, 3677; DOI: https://doi.org/10.1021/cr800501s.

    Article  CAS  PubMed  Google Scholar 

  14. V. A. Glushkov, M. S. Denisov, A. A. Gorbunov, Y. A. Myalitzin, M. V. Dmitriev, P. A. Slepukhin, Chem. Heterocycl. Compd. (Engl. Transl.), 2019, 55, 217; DOI: https://doi.org/10.1007/s10593-019-02445-1.

    Article  CAS  Google Scholar 

  15. S. C. Sau, P. K. Hota, S. K. Mandal, M. Soleilhavoup, G. Bertrand, Chem. Soc. Rev., 2020, 49, 1233; DOI: https://doi.org/10.1039/C9CS00866G.

    Article  CAS  PubMed  Google Scholar 

  16. Q. Teng, W. Wu, H. A. Duong, H. V. Huynh, Chem. Commun., 2018, 54, 6044; DOI: https://doi.org/10.1039/C8CC01808A.

    Article  CAS  Google Scholar 

  17. H. V. Huynh, Chem. Rev., 2018, 118, 9457; DOI: https://doi.org/10.1021/acs.chemrev.8b00067.

    Article  CAS  PubMed  Google Scholar 

  18. B. Ramasamy, P. Ghosh, Eur. J. Inorg. Chem., 2016, 2016, 1448; DOI: https://doi.org/10.1002/ejic.201501429.

    Article  CAS  Google Scholar 

  19. E. Peris, Chem. Rev., 2018, 118, 9988; DOI: https://doi.org/10.1021/acs.chemrev.6b00695.

    Article  CAS  PubMed  Google Scholar 

  20. L.-C. Liu, Y.-H. Tzeng, C.-H. Hung, H. M. Lee, Eur. J. Inorg. Chem., 2020, 2020, 3601; DOI: https://doi.org/10.1002/ejic.202000530.

    Article  CAS  Google Scholar 

  21. Z. G. Specht, S. A. Cortes-Llamas, H. N. Tran, C. J. van Niekerk, K. T. Rancudo, J. A. Golen, C. E. Moore, A. L. Rheingold, T. J. Dwyer, D. B. Grotjahn, Chem. Eur. J., 2011, 17, 6606; DOI: https://doi.org/10.1002/chem.201100850.

    Article  CAS  PubMed  Google Scholar 

  22. S. T. Liddle, I. S. Edworthy, P. L. Arnold, Chem. Soc. Rev., 2007, 36, 1732; DOI: https://doi.org/10.1039/B611548A.

    Article  CAS  PubMed  Google Scholar 

  23. S. Kuwata, T. Ikariya, Chem. Eur. J., 2011, 17, 3542; DOI: https://doi.org/10.1002/chem.201003296.

    Article  CAS  PubMed  Google Scholar 

  24. S. Kuwata, T. Ikariya, Chem. Commun., 2014, 50, 14290; DOI: https://doi.org/10.1039/C4CC04457F.

    Article  CAS  Google Scholar 

  25. K. Chen, M. M. Nenzel, T. M. Brown, V. J. Catalano, Inorg. Chem., 2015, 54, 6900; DOI: https://doi.org/10.1021/acs.inorgchem.5b00821.

    Article  CAS  PubMed  Google Scholar 

  26. D. J. O’Hearn, R. D. Singer, Organometallics, 2017, 36, 3175; DOI: https://doi.org/10.1021/acs.organomet.7b00489.

    Article  CAS  Google Scholar 

  27. V. J. Catalano, M. A. Malwitz, A. O. Etogo, Inorg. Chem., 2004, 43, 5714; DOI: https://doi.org/10.1021/ic049604k.

    Article  CAS  PubMed  Google Scholar 

  28. V. J. Catalano, L. B. Munro, C. E. Strasser, A. F. Samin, Inorg. Chem., 2011, 50, 8465; DOI: https://doi.org/10.1021/ic201053t.

    Article  CAS  PubMed  Google Scholar 

  29. C. E. Strasser, V. J. Catalano, Inorg. Chem., 2011, 50, 11228; DOI: https://doi.org/10.1021/ic201795b.

    Article  CAS  PubMed  Google Scholar 

  30. C. E. Strasser, V. J. Catalano, J. Am. Chem. Soc., 2010, 132, 10009; DOI: https://doi.org/10.1021/ja104585q.

    Article  CAS  PubMed  Google Scholar 

  31. B. Liu, X. Liu, C. Chen, C. Chen, W. Chen, Organometallics, 2012, 31, 282; DOI: https://doi.org/10.1021/om3007689.

    Article  CAS  Google Scholar 

  32. L. B. Munro, V. J. Catalano, Eur. J. Inorg. Chem., 2014, 2014, 4994; DOI: https://doi.org/10.1002/ejic.201402483.

    Article  CAS  Google Scholar 

  33. D. E. Prokopchuk, B. T. H. Tsui, A. J. Lough, R. H. Morris, Chem. Eur. J., 2014, 20, 16960; DOI: https://doi.org/10.1002/chem.201404819.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Shimoyama, T. Ishizuka, H. Kotani, Y. Shiota, K. Yoshizawa, K. Mieda, T. Ogura, T. Okajima, S. Nozawa, T. Kojima, Angew. Chem., Int. Ed., 2016, 55, 14041; DOI: https://doi.org/10.1002/anie.201607861.

    Article  CAS  Google Scholar 

  35. L. Duan, M. Wang, P. Li, Y. Na, N. Wang, L. Sun, Dalton Trans., 2007, 1277; DOI: https://doi.org/10.1039/B616645H.

  36. S. Das Adhikary, T. Samanta, G. Roymahapatra, F. Loiseau, D. Jouvenot, S. Giri, P. K. Chattaraj, J. Dinda, New J. Chem., 2010, 34, 1974; DOI: https://doi.org/10.1039/B9NJ00698B.

    Article  CAS  Google Scholar 

  37. M. R. Chapman, B. R. M. Lake, C. M. Pask, B. N. Nguyen, C. E. Willans, Dalton Trans., 2015, 44, 15938; DOI: https://doi.org/10.1039/C5DT02194D.

    Article  CAS  PubMed  Google Scholar 

  38. A. M. Magill, D. S. McGuinness, K. J. Cavell, G. J. P. Britovsek, V. C. Gibson, A. J. P. White, D. J. Williams, A. H. White, B. W. Skelton, J. Org. Chem., 2001, 617–618, 546; DOI: https://doi.org/10.1016/S0022-328X(00)00720-8.

    Article  Google Scholar 

  39. X. Zhang, S. Gu, Q. Xia, W. Chen, J. Org. Chem., 2009, 694, 2359; DOI: https://doi.org/10.1021/om060030w.

    Article  CAS  Google Scholar 

  40. M. M. Nenzel, K. Chen, V. J. Catalano, J. Coord. Chem., 2016, 69, 160; DOI: https://doi.org/10.1080/00958972.2015.1121383.

    Article  CAS  Google Scholar 

  41. C. Chen, H. Qiu, W. Chen, J. Org. Chem., 2012, 696, 4166; DOI: https://doi.org/10.1016/j.jorganchem.2011.09.008.

    Article  CAS  Google Scholar 

  42. S. Evjen, A. Fiksdahl, Synthetic Commun., 2017, 47, 1392; DOI: https://doi.org/10.1080/00397911.2017.1330416.

    Article  CAS  Google Scholar 

  43. L. Leclercq, M. Simard, A. R. Schmitzer, J. Mol. Struct., 2009, 918, 101; DOI: https://doi.org/10.1016/j.molstruc.2008.07.023.

    Article  CAS  Google Scholar 

  44. B. Cui, B. L. Zheng, K. He, Q. Y. Zheng, J. Nat. Prod., 2003, 66, 1101; DOI: https://doi.org/10.1021/np030031i.

    Article  CAS  PubMed  Google Scholar 

  45. K. Verlinden, H. Buhl, W. Frank, C. Ganter, Eur. J. Inorg. Chem., 2015, 2015, 2416; DOI: https://doi.org/10.1002/ejic.201500174.

    Article  CAS  Google Scholar 

  46. G. Meng, L. Kakalis, S. P. Nolan, M. Szostak, Tetrahedron Lett., 2019, 60, 378; DOI: https://doi.org/10.1016/j.tetlet.2018.12.059.

    Article  CAS  Google Scholar 

  47. N. Kuhn, T. Kratz, Synth., 1993, 1993, 561; DOI: https://doi.org/10.1055/s-1993-25902.

    Article  Google Scholar 

  48. B. Çetinkaya, E. Çetinkaya, J. A. Chamizo, P. B. Hitchcock, H. A. Jasim, H. Küçükbay, M.F. Lappert, J. Chem. Soc., Perkin Trans. 1, 1998, 2047; DOI: https://doi.org/10.1039/A802123F.

  49. C. Holtgrewe, C. Diedrich, T. Pape, S. Grimme, F. E. Hahn, Eur. J. Org. Chem., 2006, 2006, 3116; DOI: https://doi.org/10.1002/ejoc.200600087.

    Article  CAS  Google Scholar 

  50. L. Liang, Z. Li, X. Zhou, Org. Lett., 2009, 11, 3294; DOI: https://doi.org/10.1021/ol9010773.

    Article  CAS  PubMed  Google Scholar 

  51. C. B. Aakeröy, T. K. Wijethunga, J. Desper, New J. Chem., 2015, 39, 822; DOI: https://doi.org/10.1039/C4NJ01324G.

    Article  Google Scholar 

  52. Z. Zhang, Y. Yang, H. Sun, R. Cao, Inorg. Chim. Acta, 2015, 434, 158; DOI: https://doi.org/10.1016/j.ica.2015.05.021.

    Article  CAS  Google Scholar 

  53. Bruker. APEX3, Bruker AXS Inc., Madison, Wisconsin, USA, 2018.

  54. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  CAS  Google Scholar 

  55. G. Sheldrick, Acta Cryst., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Trifonov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1957–1963, October, 2021.

This study was financially supported by the Russian Foundation for Basic Research (Project No. 19-33-90273). The X-ray diffraction and NMR spectroscopic studies of compounds 1 and 2 were performed using equipment of the Joint Analytical Center of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences with the financial support by the Ministry of Science and Higher Education of the Russian Federation (Grant “Promotion of the Development of Infractructure of Centers for Shared Use of Scientific Equipment,” agreement number 13.CKP.21.0017).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapshin, I.V., Cherkasov, A.V. & Trifonov, A.A. Synthesis and structures of 4,5-dimethyl-1,3-bis(pyridin-2-ylmethyl)-1H-imidazolium chloride and 1,1′-bis(pyridin-2-ylmethyl)-2,2′-bis(4,5-dimethylimidazole). Russ Chem Bull 70, 1957–1963 (2021). https://doi.org/10.1007/s11172-021-3303-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3303-3

Key words

Navigation