Skip to main content
Log in

Thermodynamic properties of quaternary systems based on hafnia: a high-temperature mass spectrometric study and modeling

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The composition of vapor over ceramic samples of the La2O3−Sm2O3−Y2O3−HfO2 and La2O3−Sm2O3−ZrO2−HfO2 systems, the vaporization rates of the samples, and the thermodynamic properties of components of the systems mentioned above were studied for the first time by Knudsen effusion mass spectrometry at T = 2330 K. The lanthanoid oxide activities in these systems demonstrated negative deviations from ideal behavior. The experimental lanthanoid oxide activity values were compared with the results of calculations by the semiempirical Kohler, Redlich-Kister, and Wilson methods as well as based on the generalized lattice theory of associated solutions carried out using the data for corresponding binary systems. It was established that, among the semiempirical methods considered, Wilson’s approach provides the best agreement with the experimental data when calculating the thermodynamic properties of multicomponent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Election of the Full Members (Academicians), Corresponding Members, and Foreign Members of the Russian Academy of Sciences, Russ. Chem. Bull., 2022, 71, 1559; DOI: https://doi.org/10.1007/s11172-022-3565-4.

    Article  Google Scholar 

  2. D. R. Clarke, S. R. Phillpot, Mater. Today, 2005, 8, 22; DOI: https://doi.org/10.1016/S1369-7021(05)70934-2.

    Article  CAS  Google Scholar 

  3. V. Ya. Shevchenko, O. A. Shilova, T. A. Kochina, L. D. Barinova, O. V. Belyi, Glass Phys. Chem., 2019, 45, 1; DOI: https://doi.org/10.1134/S1087659619010103.

    Article  CAS  Google Scholar 

  4. E. N. Kablov, Litye lopatki gazoturbinnykh dvigatelei: splavy, tekhnologii, pokrytiya [Cast Blades for Gas Turbine Engines: Alloys, Technologies, Coatings], Nauka, Moscow, 2006, 632 pp. (in Russian).

    Google Scholar 

  5. J. Wang, H. P. Li, R. Stevens, J. Mater. Sci., 1992, 27, 5397; DOI: https://doi.org/10.1007/BF00541601.

    Article  CAS  Google Scholar 

  6. R. A. Miller, J. Therm. Spray Technol., 1997, 6, 35; DOI: https://doi.org/10.1007/BF02646310.

    Article  CAS  Google Scholar 

  7. J. R. Nicholls, MRS Bull., 2003, 28, 659; DOI: https://doi.org/10.1557/mrs2003.194.

    Article  CAS  Google Scholar 

  8. E. R. Andrievskaya, J. Eur. Ceram. Soc., 2008, 28, 2363; DOI: https://doi.org/10.1016/j.jeurceramsoc.2008.01.009.

    Article  CAS  Google Scholar 

  9. F. Kohler, Monatsh. Chem., 1960, 91, 738; DOI: https://doi.org/10.1007/BF00899814.

    Article  CAS  Google Scholar 

  10. O. Redlich, A. T. Kister, Ind. Eng. Chem., 1948, 40, 345; DOI: https://doi.org/10.1021/ie50458a036.

    Article  Google Scholar 

  11. R. V. Orye, J. M. Prausnitz, Ind. Eng. Chem., 1965, 57, 18; DOI: https://doi.org/10.1021/ie50665a005.

    Article  CAS  Google Scholar 

  12. J. A. Barker, J. Chem. Phys., 1952, 20, 1526; DOI: https://doi.org/10.1063/1.1700209.

    Article  CAS  Google Scholar 

  13. E. R. Andrievskaya, L. M. Lopato, J. Am. Ceram. Soc., 2001, 84, 2415; DOI: https://doi.org/10.1111/j.1151-2916.2001.tb01023.x.

    Article  CAS  Google Scholar 

  14. E. R. Andrievskaya, V. Smirnov, L. M. Lopato, High Temp. Mater. Process., 2004, 23, 147; DOI: https://doi.org/10.1515/HTMP.2004.23.3.147.

    Article  CAS  Google Scholar 

  15. O. V. Chudinovych, E. R. Andrievskaya, J. D. Bogatyryova, O. I. Bukov, J. Chem. Technol., 2018, 26, 20; DOI: https://doi.org/10.15421/0817260203.

    Article  CAS  Google Scholar 

  16. O. V. Chudinovych, S. F. Korichev, E. R. Andrievskaya, Powder Metall. Met. Ceram., 2020, 58, 599; DOI: https://doi.org/10.1007/s11106-020-00113-0.

    Article  CAS  Google Scholar 

  17. O. A. Kornienko, A. I. Bykov, E. R. Andrievskaya, Powder Metall. Met. Ceram., 2020, 59, 224; DOI: https://doi.org/10.1007/s11106-020-00154-5.

    Article  Google Scholar 

  18. V. A. Vorozhtcov, S. A. Kirillova, A. L. Shilov, S. I. Lopatin, V. L. Stolyarova, Mater. Today Commun., 2021, 29, 102952; DOI: https://doi.org/10.1016/j.mtcomm.2021.102952.

    Article  CAS  Google Scholar 

  19. E. N. Kablov, V. L. Stolyarova, V. A. Vorozhtcov, S. I. Lopatin, O. B. Fabrichnaya, M. O. Ilatovskaya, F. N. Karachevtsev, Rapid Commun. Mass Spectrom., 2018, 32, 686; DOI: https://doi.org/10.1002/rcm.8081.

    Article  CAS  PubMed  Google Scholar 

  20. E. N. Kablov, V. L. Stolyarova, V. A. Vorozhtcov, S. I. Lopatin, S. M. Shugurov, A. L. Shilov, F. N. Karachevtsev, P. N. Medvedev, Rapid Commun. Mass Spectrom., 2020, 34, e8693; DOI: https://doi.org/10.1002/rcm.8693.

    Article  CAS  PubMed  Google Scholar 

  21. V. L. Stolyarova, V. A. Vorozhtcov, S. I. Lopatin, S. M. Shugurov, A. L. Shilov, F. N. Karachevtsev, Rapid Commun. Mass Spectrom., 2021, 35, e9066; DOI: https://doi.org/10.1002/rcm.9066.

    CAS  PubMed  Google Scholar 

  22. E. N. Kablov, V. L. Stolyarova, V. A. Vorozhtcov, S. I. Lopatin, S. M. Shugurov, A. L. Shilov, F. N. Karachevtsev, Rapid Commun. Mass Spectrom., 2022, 36, e9238; DOI: https://doi.org/10.1002/rcm.9238.

    CAS  PubMed  Google Scholar 

  23. K. Hilpert, Rapid Commun. Mass Spectrom., 1991, 5, 175; DOI: https://doi.org/10.1002/rcm.1290050408.

    Article  CAS  Google Scholar 

  24. J. Drowart, C. Chatillon, J. Hastie, D. Bonnell, Pure Appl. Chem., 2005, 77, 683; DOI: https://doi.org/10.1351/pac200577040683.

    Article  CAS  Google Scholar 

  25. V. L. Stolyarova, G. A. Semenov, Mass Spectrometric Study of the Vaporization of Oxide Systems, J. Wiley & Sons, Chichester, 1994, 446 pp.

    Google Scholar 

  26. G. A. Semenov, E. N. Nikolaev, K. E. Frantseva, Primenenie mass-spectrometrii v neorganicheskoi khimii [Mass Spectrometry in Inorganic Chemistry], Khimiya, Leningrad, 1976, 151 pp. (in Russian).

    Google Scholar 

  27. S. I. Lopatin, S. M. Shugurov, Z. G. Tyurnina, N. G. Tyurnina, Glass Phys. Chem., 2021, 47, 38; DOI: https://doi.org/10.1134/S1087659621010077.

    Article  CAS  Google Scholar 

  28. L. V. Gurvich, I. V. Weiz, V. A. Medvedev, G. A. Bergman, V. S. Yungman, G. A. Khachkuruzov, V. S. Iorish, O. V. Dorofeeva, E. L. Osina, Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnoe izdanie [Thermodynamic Properties of Individual Substances. A Reference], Nauka, Moscow, 1982, Vol. IV, Ch. 2, 560 pp. (in Russian).

    Google Scholar 

  29. S. M. Shugurov, O. Y. Kurapova, S. I. Lopatin, V. G. Konakov, E. A. Vasil’eva, Rapid Commun. Mass Spectrom., 2017, 31, 2021; DOI: https://doi.org/10.1002/rcm.7997.

    Article  CAS  PubMed  Google Scholar 

  30. R. J. Ackermann, E. G. Rauh, J. Chem. Thermodyn., 1971, 3, 445; DOI: https://doi.org/10.1016/S0021-9614(71)80027-7.

    Article  CAS  Google Scholar 

  31. P. N. Walsh, H. W. Goldstein, D. White, J. Am. Ceram. Soc., 1960, 43, 229; DOI: https://doi.org/10.1111/J.1151-2916.1960.TB14589.X.

    Article  CAS  Google Scholar 

  32. H. W. Goldstein, P. N. Walsh, D. White, J. Phys. Chem., 1961, 65, 1400; DOI: https://doi.org/10.1021/J100826A029.

    Article  CAS  Google Scholar 

  33. V. A. Vorozhtcov, V. L. Stolyarova, S. I. Lopatin, E. P. Simonenko, N. P. Simonenko, K. A. Sakharov, V. G. Sevastyanov, N. T. Kuznetsov, J. Alloys Compd., 2018, 735, 2348; DOI: https://doi.org/10.1016/J.JALLCOM.2017.11.319.

    Article  CAS  Google Scholar 

  34. P. L. Zeifert, in High Temperature Technology, Ed. I. E. Kempbell, John Wiley, New York, 1956, p. 485.

  35. V. L. Stolyarova, V. A. Vorozhtcov, S. I. Lopatin, S. M. Shugurov, Russ. J. Gen. Chem., 2020, 90, 874; DOI: https://doi.org/10.1134/S1070363220050199.

    Article  CAS  Google Scholar 

  36. P. Chartrand, A. D. Pelton, J. Phase Equilib., 2000, 21, 141; DOI: https://doi.org/10.1361/105497100770340192.

    Article  CAS  Google Scholar 

  37. I. G. Vinichenko, A. N. Marinichev, M. P. Susarev, Zhurn. prikl. khimii [J. Appl. Chem. USSR], 1968, 41, 839 (in Russian).

    CAS  Google Scholar 

  38. A. G. Morachevskii, E. Yu. Kolosova, L. S. Tsemekhman, L. B. Tsymbulov, Russ. J. Appl. Chem., 2007, 80, 1040; DOI: https://doi.org/10.1134/S107042720707004X.

    Article  CAS  Google Scholar 

  39. L. S. Darken, J. Am. Chem. Soc., 1950, 72, 2909; DOI: https://doi.org/10.1021/ja01163a030.

    Article  CAS  Google Scholar 

  40. A. L. Shilov, V. L. Stolyarova, V. A. Vorozhtcov, S. I. Lopatin, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2019, 65, 165; DOI: https://doi.org/10.1016/J.CALPHAD.2019.03.001.

    Article  CAS  Google Scholar 

  41. A. L. Shilov, V. L. Stolyarova, V. A. Vorozhtsov, S. I. Lopatin, S. M. Shugurov, Russ. J. Inorg. Chem., 2020, 65, 773; DOI: https://doi.org/10.1134/S0036023620050216.

    Article  CAS  Google Scholar 

  42. S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, W. G. Mallard, J. Phys. Chem. Ref. Data, Suppl. 1, 1988, 17, 861 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Vorozhtcov, V. L. Stolyarova or S. A. Kirillova.

Additional information

The authors express their gratitude to the staff of the Cryogenic Department at the Research Park of Saint Petersburg State University for supply of liquid nitrogen necessary for the operation of the MS-1301 mass spectrometer.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-33-90175).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Stolyarova Valentina Leonidovna, born in 1952, Doctor of Science (Chem.), Professor at Saint Petersburg State University. She is a specialist in the field of high-temperature chemistry of oxide systems and inorganic materials. In 2022, V. L. Stolyarova was elected a Full Member of the Russian Academy of Sciences (for more details, see Ref. 1).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 72, No. 1, pp. 148–157, January, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorozhtcov, V.A., Stolyarova, V.L., Kirillova, S.A. et al. Thermodynamic properties of quaternary systems based on hafnia: a high-temperature mass spectrometric study and modeling. Russ Chem Bull 72, 148–157 (2023). https://doi.org/10.1007/s11172-023-3719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-023-3719-z

Key words

Navigation