Skip to main content
Log in

Boron nanoparticles in chemotherapy and radiotherapy: the synthesis, state-of-the-art, and prospects

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Boron neutron capture therapy (BNCT) is a radiotherapy method for cancer treatment based on the nuclear reaction of the stable 10B isotope with epithermal neutrons that produces high-energy particles affecting the localization site of the isotope. Currently, only two low molecular weight boron-containing compounds (boronophenylalanine and sodium mercaptododecaborate) have been approved for clinical use as targeting agents for BNCT. In spite of positive effects of these substances, certain drawbacks including the low 10B atom content per molecule and low tumor tropism make them of limited use. This review focuses on new-generation targeting agents for BNCT, such as elemental boron, boron carbide, and boron nitride nanoparticles (NPs). Their main advantage is the high content of 10B atoms, e.g., a 3-nm elemental boron NP contains 12000 atoms (cf. 20000 atoms for a 50-nm NP). This allows one to reach the concentration range necessary for successful implementation of BNCT. Information is analyzed and summarized on methods for the synthesis and biological applications of the title targeting agents for BNCT and combined chemotherapy, where NPs can also simultaneously act as drug carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. Baskar, K. A. Lee, R. Yeo, K.-W. Yeoh, Int. J. Med. Sci., 2012, 9, 193; DOI: https://doi.org/10.7150/ijms.3635.

    Article  PubMed  PubMed Central  Google Scholar 

  2. L. L. Berry, S. W. Davis, A. G. Flynn, J. Landercasper, K. A. Deming, J. Psychosocial Oncol., 2019, 37, 1; DOI: https://doi.org/10.1080/07347332.2018.1522411.

    Article  Google Scholar 

  3. M. Matsuda, T. Yamamoto, H. Kumada, K. Nakai, M. Shirakawa, T. Tsurubuchi, A. Matsumura, Appl. Radiat. Isot., 2009, 67, 19; DOI: https://doi.org/10.1016/j.apradiso.2009.03.054.

    Article  Google Scholar 

  4. H. Tanaka, Y. Sakurai, M. Suzuki, T. Takata, S. Masunaga, Y. Kinashi, G. Kashino, Y. Liu, T. Mitsumoto, S. Yajima, H. Tsutsui, M. Takada, A. Maruhashi, K. Ono, Appl. Radiat. Isot., 2009, 67, 258; DOI: https://doi.org/10.1016/j.apradiso.2009.03.096.

    Article  Google Scholar 

  5. M. A. Dymova, S. Yu. Taskaev, V. A. Richter, E. V. Kuligina, Cancer Commun., 2020, 40, 406; DOI: https://doi.org/10.1002/cac2.12089.

    Article  Google Scholar 

  6. L. Porra, T. Seppälä, L. Wendland, H. Revitzer, H. Joensuu, P. Eide, H. Koivunoro, N. Smick, Th. Smick, M. Tenhunen, Acta Oncol., 2022, 61, 269; DOI: https://doi.org/10.1080/0284186X.2021.1979646.

    Article  PubMed  Google Scholar 

  7. S.-I. Miyatake, M. Wanibuchi, N. Hu, K. Ono, J. Neurooncol., 2020, 149, 1; DOI: https://doi.org/10.1007/s11060-020-03586-6.

    Article  CAS  PubMed  Google Scholar 

  8. H. Fukuda, Cells, 2021, 10, 2881; DOI: https://doi.org/10.3390/cells10112881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Takai, M. Wanibuchi, S. Kawabata, K. Takeuchi, Y. Sakurai, M. Suzuki, K. Ono, S. Miyatake, Neuro-Oncology, 2022, 24, 90; DOI: https://doi.org/10.1093/neuonc/noab108.

    Article  CAS  PubMed  Google Scholar 

  10. A. Wittig, L. Collette, K. Appelman, S. Bührmann, M. C. Jäckel, K. H. Jöckel, K. W. Schmid, U. Ortmann, R. Moss, W. A. G. Sauerwein, J. Cell Molec. Med., 2009, 13, 1653; DOI: https://doi.org/10.1111/j.1582-4934.2009.00856.x.

    Article  Google Scholar 

  11. R. F. Barth, J. A. Coderre, M. G. H. Vicente, T. E. Blue, Clin. Cancer Res., 2005, 11, 3987; DOI: https://doi.org/10.1158/1078-0432.CCR-05-0035.

    Article  CAS  PubMed  Google Scholar 

  12. T. Li, J. Hamdi, M.F. Hawthorne, Bioconjugate Chem., 2006, 17, 15; DOI: https://doi.org/10.1021/bc0501350.

    Article  CAS  Google Scholar 

  13. L. Kankaanranta, K. Saarilahti, A. Mäkitie, P. Välimäki, M. Tenhunen, H. Joensuu, Radiother. Oncol., 2011, 99, 97; DOI: https://doi.org/10.1016/j.radonc.2011.02.008.

    Article  Google Scholar 

  14. R. F. Barth, P. Mi, W. Yang, Cancer Commun., 2018, 38, 35; DOI: https://doi.org/10.1186/s40880-018-0299-7.

    Article  Google Scholar 

  15. A. H. Soloway, W. Tjarks, B. A. Bauman, F.-G. Rong, R. F. Barth, I. M. Codogni, J. G. Wilson, Chem. Rev., 1998, 98, 1515; DOI: https://doi.org/10.1021/cr941195u.

    Article  CAS  PubMed  Google Scholar 

  16. G. Wu, R. F. Barth, W. Yang, R. J. Lee, W. Tjarks, M. V. Backer, J. M. Backer, Anti-Cancer Agents Med. Chem., 2006, 6, 167; DOI: https://doi.org/10.2174/187152006776119153

    Article  CAS  Google Scholar 

  17. R. Esfand, D. A. Tomalia, Drug Discovery Today, 2001, 6, 427; DOI: https://doi.org/10.1016/s1359-6446(01)01757-3.

    Article  CAS  PubMed  Google Scholar 

  18. C. M. van Rij, A. J. Wilhelm, W. A. G. Sauerwein, A. C. van Loenen, Pharm. World Sci., 2005, 27, 92; DOI: https://doi.org/10.1007/s11096-004-2850-7.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Zhu, Y. C. Koh, J. A. Maguire, N. S. Hosmane, Curr. Chem. Biol., 2007, 1, 141; DOI: https://doi.org/10.2174/187231307780636431.

    CAS  Google Scholar 

  20. Z. J. Leśnikowski, E. Paradowska, A. B. Olejniczak, M. Studzinska, P. Seekamp, U. Schüßler, D. Gabel, R. F. Schinazi, J. Plešek, Bioorg. Med. Chem., 2006, 13, 4168; DOI: https://doi.org/10.1016/j.bmc.2005.04.042.

    Article  Google Scholar 

  21. M. W. Renner, M. Miura, M. W. Easson, M. G. H. Vicente, Anti-Cancer Agents Med. Chem., 2006, 6, 145; DOI: https://doi.org/10.2174/187152006776119135.

    Article  CAS  Google Scholar 

  22. A. K. Azab, A. H. Abu, M. Srebnik, in Contemporary Aspects of Boron: Chemistry and Biological Applications (Studies in Inorgan. Chem. Series, Vol. 22), Eds H. A. Ali, V. M. Dembitsky, M. Srebnik, Elsevier, 2005, 338; DOI: https://doi.org/10.1016/S0169-3158(06)80006-X.

  23. A. A. Druzina, M. Yu. Stogniy, Russ. Chem. Bull., 2021, 70, 527; DOI: https://doi.org/10.1007/s11172-021-3119-1.

    Article  CAS  Google Scholar 

  24. V. I. Bregadze, I. B. Sivaev, A. Semioshkin, A. V. Shmal’ko, I. D. Kosenko, K. V. Lebedeva, S. Mandal, P. Sreejyothi, R. D. Dubey, A. Sarkar, Z. Shen, A. Wu, N. S. Hosmane, Chem. Eur. J., 2020, 26, 13832; DOI: https://doi.org/10.1002/chem.201905083.

    Article  CAS  PubMed  Google Scholar 

  25. R. D. Dubey, A. Sarkar, Z. Shen, V. I. Bregadze, I. B. Sivaev, A. A. Druzina, O. B. Zhidkova, A. V. Shmal’ko, I. D. Kosenko, P. Sreejyothi, S. Mandal, N. S. Hosmane, J. Pharm. Sci., 2021, 110, 1365; DOI: https://doi.org/10.1016/j.xphs.2020.12.017.

    Article  CAS  PubMed  Google Scholar 

  26. A. R. Tsygankova, D. A. Gruzdev, V. V. Kanygin, T. Ya. Guselnikova, A. A. Telegina, A. A. Kasatova, A. I. Kichigin, G. L. Levit, L. V. Mechetina, R. A. Mukhamadiyarov, I. A. Razumov, O. I. Solovieva, O. Yu. Volkova, A. A. Ponomarev, V. P. Krasnov, E. L. Zavjalov, Mendeleev Commun., 2021, 31, 659; DOI: https://doi.org/10.1016/j.mencom.2021.09.022.

    Article  CAS  Google Scholar 

  27. M. Yang, H. Jin, Z. Sun, R. Gui, J. Mater. Chem. A, 2022, 10, 5111, DOI: https://doi.org/10.1039/D1TA10132C.

    Article  CAS  Google Scholar 

  28. S. A. Uspenskii, P. A. Khaptakhanova, A. A. Zaboronok, T. S. Kurkin, O. Yu. Volkova, L. V. Mechetina, A. V. Taranin, V. V. Kanygin, Matsumura Akira, S. Yu. Taskaev, Dokl. Chem., 2020, 491, 45; DOI: https://doi.org/10.1134/S0012500820030027.

    Article  CAS  Google Scholar 

  29. H. Koivunoro, E. Hippeläinen, I. Auterinen, L. Kankaanranta, M. Kulvik, J. Laakso, T. Seppälä, S. Savolainen, H. Joensuu, Appl. Radiat. Isot., 2015, 106, 189; DOI: https://doi.org/10.1016/j.apradiso.2015.08.014.

    Article  CAS  PubMed  Google Scholar 

  30. L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, O. C. Farokhzad, Clin. Pharmacol. Ther., 2008, 83, 761; DOI: https://doi.org/10.1038/sj.clpt.6100400.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Fukumori, H. Ichikawa, Adv. Powder Technol., 2006, 17, 1; DOI: https://doi.org/10.1163/156855206775123494.

    Article  CAS  Google Scholar 

  32. A. A. Bhirde, B. V. Chikkaveeraiah, A. Srivatsan, G. Niu, A. J. Jin, A. Kapoor, Z. Wang, S. Patel, V. Patel, A. M. Gorbach, R. D. Leapman, J. S. Gutkind, A. R. Hight Walker, X. Chen, ACS Nano, 2014, 8, 4177; DOI: https://doi.org/10.1021/nn501223q.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. H. Bolhuis, H. W. van Veen, B. Poolman, A. J. M. Dressen, W. N. Konings, FEMS Microbiol. Rev., 1997, 21, 55; DOI: https://doi.org/10.1111/j.1574-6976.1997.tb00345.x.

    Article  CAS  PubMed  Google Scholar 

  34. C. E. Soma, C. Dubernet, G. Barratt, F. Nemati, M. Appel, S. Benita, P. Couvreur, Pharm. Res., 1999, 16, 1710; DOI: https://doi.org/10.1023/A:1018902031370.

    Article  CAS  PubMed  Google Scholar 

  35. F. Wang, Y.-C. Wang, S. Dou, M.-H. Xiong, T.-M. Sun, J. Wang, ACS Nano, 2011, 5, 3679; DOI: https://doi.org/10.1021/nn200007z.

    Article  CAS  PubMed  Google Scholar 

  36. F. M. Kievit, F. Y. Wang, C. Fang, H. Mok, K. Wang, J. R. Silber, R. G. Ellenbogen, M. Zhang, J. Control. Release, 2011, 152, 76; DOI: https://doi.org/10.1016/j.jconrel.2011.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Park, P. M. Fong, J. Lu, K. S. Russell, C. J. Booth, W. M. Saltzman, T. M. Fahmy, Nanomedicine, 2009, 5, 410; DOI: https://doi.org/10.1016/j.nano.2009.02.002.

    Article  CAS  PubMed  Google Scholar 

  38. K. W. Kang, M.-K. Chun, O. Kim, R. K. Subedi, S.-G. Ahn, J.-H. Yoon, H.-K. Choi, Nanomedicine, 2010, 6, 210; DOI: https://doi.org/10.1016/j.nano.2009.12.006.

    Article  CAS  PubMed  Google Scholar 

  39. C. E. Soma, C. Dubernet, G. Barratt, S. Benita, P. Couvreur, J. Control. Release, 2000, 68, 283; DOI: https://doi.org/10.1016/S0168-3659(00)00269-8.

    Article  CAS  PubMed  Google Scholar 

  40. N. Chiannilkulchai, Z. Driouich, J. P. Benoit, A. L. Parodie, P. Couvreur, Sel. Cancer Ther., 1989, 5, 1; DOI: https://doi.org/10.1089/sct.1989.5.1.

    Article  CAS  PubMed  Google Scholar 

  41. C. Achilli, S. Grandi, A. Ciana, G. F. Guidetti, A. Malara, V. Abbonante, L. Cansolino, C. Tomasi, A. Balduini, M. Fagnoni, D. Merli, P. Mustarelli, I. Canobbio, C. Balduini, G. Minetti, Nanomedicine, 2014, 10, 589; DOI: https://doi.org/10.1016/j.nano.2013.10.003.

    Article  CAS  PubMed  Google Scholar 

  42. M. R. Dreher, W. Liu, C. R. Michelich, M. W. Dewhirst, F. Yuan, A. Chilkoti, J. Natl. Cancer Inst., 2006, 98, 335; DOI: https://doi.org/10.1093/jnci/djj070.

    Article  CAS  PubMed  Google Scholar 

  43. J. A. Champion, Y. K. Katare, S. Mitragotri, J. Control. Release, 2007, 121, 3; DOI: https://doi.org/10.1016/j.jconrel.2007.03.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. R. C. May, L. M. Machesky, J. Cell Sci., 2001, 114, 1061; DOI: https://doi.org/10.1242/jcs.114.6.1061.

    Article  CAS  PubMed  Google Scholar 

  45. J. Rejman, V. Oberle, I. S. Zuhorn, D. Hoekstra, Biochem. J., 2004, 377, 159; DOI: https://doi.org/10.1042/BJ20031253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. R. Augustine, A. Hasan, R. Primavera, R. Wilson, A. Thakor, B. Kevadiya, Mater. Today Commun., 2020, 25, 101692; DOI: https://doi.org/10.1016/j.mtcomm.2020.101692.

    Article  CAS  Google Scholar 

  47. B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, Nano Lett., 2006, 6, 662; DOI: https://doi.org/10.1021/nl052396o.

    Article  CAS  PubMed  Google Scholar 

  48. K. Shapero, F. Fenaroli, I. Lynch, D. C. Cottell, A. Salvati, K. A. Dawson, Mol. BioSyst., 2011, 7, 371; DOI: https://doi.org/10.1039/C0MB00109K.

    Article  CAS  PubMed  Google Scholar 

  49. S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, W. C. W. Chan, Nat. Rev. Mater., 2016, 1, 16014; DOI: https://doi.org/10.1038/natrevmats.2016.14.

    Article  CAS  Google Scholar 

  50. S. Behzadi, V. Serpooshan, W. Tao, M.A. Hamaly, M. Y. Alkawareek, E. C. Dreaden, D. Brown, A. M. Alkilany, O. C. Farokhzad, M. Mahmoudi, Chem. Soc. Rev., 2017, 46, 4218; DOI: https://doi.org/10.1039/c6cs00636a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. C.-G. Liu, Y.-H. Han, R. K. Kankala, S.-B. Wang, A.-Z. Chen, Int. J. Nanomed., 2020, 15, 675; DOI: https://doi.org/10.2147/in.s226186.

    Article  CAS  Google Scholar 

  52. N. Hoshyar, S. Gray, H. Han, G. Bao, Nanomedicine (Lond.), 2016, 11, 673; DOI: https://doi.org/10.2217/nnm.16.5.

    Article  CAS  PubMed  Google Scholar 

  53. K. S. Allemailem, A. Almatroudi, M. A. Alsahli, A. Aljaghwani, A. M. El-Kady, A. H. Rahmani, A. A. Khan, Int. J. Nanomed., 2021, 16, 3907; DOI: https://doi.org/10.2147/ijn.s303832.

    Article  Google Scholar 

  54. P. Couvreur, Adv. Drug Deliv. Rev., 2013, 65, 21; DOI: https://doi.org/10.1016/j.addr.2012.04.010.

    Article  CAS  PubMed  Google Scholar 

  55. A. Kirtane, S. Kalscheuer, J. Panyam, Adv. Drug Deliv. Rev., 2013, 65, 1731; DOI: https://doi.org/10.1016/j.addr.2013.09.001.

    Article  CAS  PubMed  Google Scholar 

  56. M. L. Amin, Drug Target Insights, 2013, 7, 27; DOI: https://doi.org/10.4137/DTI.S12519.

    Article  PubMed  PubMed Central  Google Scholar 

  57. P. Rees, J. W. Wills, M. R. Brown, C. M. Barnes, H. D. Summers, Nat. Commun., 2019, 10, 2341; DOI: https://doi.org/10.1038/s41467-019-10112-4.

    Article  PubMed  PubMed Central  Google Scholar 

  58. X. Liu, N. Huang, H. Li, Q. Jin, J. Ji, Langmuir, 2013, 29, 9138; DOI: https://doi.org/10.1021/la401556k.

    Article  CAS  PubMed  Google Scholar 

  59. F. H. Nielsen, Plant and Soil, 1997, 193, 199; DOI: https://doi.org/10.1023/A:1004276311956.

    Article  CAS  Google Scholar 

  60. Boric Acid/Sodium Borate Salts: HED Chapter of the Tolerance Reassessment Eligibility Decision Document (TRED); U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Health Effects Division, U.S. Government Printing Offices, Washington, DC, 2006, № 71 FR 43744.

  61. K. Taniyama, H. Fujiwara, T. Kuno, N. Saito, X. Shuntoh, M. Sacaue, C. Tanaka, Pigment Cell Res., 1989, 2, 291; DOI: https://doi.org/10.1111/j.1600-0749.1989.tb00207.x.

    Article  CAS  PubMed  Google Scholar 

  62. A. B. Volovetsky, V. S. Sukhov, I. V. Balalaeva, V. V. Dudenkova, N. Yu. Shilyagina, A. V. Feofanov, A. V. Efremenko, M. A. Grin, A. F. Mironov, I. B. Sivaev, V. I. Bregadze, A. V. Maslennikova, Int. J. Mol. Sci., 2017, 18, 2556, DOI: https://doi.org/10.3390/ijms18122556.

    Article  PubMed  PubMed Central  Google Scholar 

  63. T. Itoh, K. Tamura, H. Ueda, T. Tanaka, K. Sato, R. Kuroda, S. Aoki, Bioorg. Med. Chem., 2018, 26, 5922; DOI: https://doi.org/10.1016/j.bmc.2018.10.041.

    Article  CAS  PubMed  Google Scholar 

  64. D. Imperio, E. Del Grosso, S. Fallarini, G. Lombardi, L. Panza, Beilstein J. Org. Chem., 2019, 15, 1355, DOI: https://doi.org/10.3762/bjoc.15.135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. S. N. Koryakin, P. L. Ivanov, V. N. Khabarov, V. A. Yadrovskaya, E. V. Isaeva, E. E. Beketov, A. N. Zelenetskii, S. A. Uspenskii, M. A. Selyanin, S. E. Ulyanenko, Pharm. Chem. J., 2013, 7, 299; DOI: https://doi.org/10.1007/s11094-013-0947-9.

    Article  Google Scholar 

  66. A. N. Zelenetskii, S. A. Uspenskii, A. Zaboronok, G. Cherkaev, A. Shchegolihin, B. J. Mathis, M. Selyanin, T. Yamamoto, A. Matsumura, Polymers, 2018, 10, 181; DOI: https://doi.org/10.3390/polym10020181.

    Article  PubMed  PubMed Central  Google Scholar 

  67. S. N. Koryakin, V. A. Yadrovskaya, E. E. Beketov, E. V. Isaeva, S. E. Ulyanenko, S. A. Uspenskiy, V. N. Khabarov, M. A. Selyanin, Cent. European J. Biol., 2014, 9, 922; DOI: https://doi.org/10.2478/s11535-014-0329-7.

    CAS  Google Scholar 

  68. S. A. Dubrovskii, A. N. Zelenetskii, S. A. Uspenskii, V. N. Khabarov, Polym. Sci., Ser. A, 2014, 56, 205; DOI: https://doi.org/10.1134/S0965545X14020047.

    Article  CAS  Google Scholar 

  69. A. Zaboronok, T. Yamamoto, K. Nakai, F. Yoshida, S. Uspenskii, M. Selyanin, A. Zelenetskii, A. Matsumura, Appl. Radiat. Isot., 2015, 106, 181; DOI: https://doi.org/10.1016/j.apradiso.2015.08.020.

    Article  CAS  PubMed  Google Scholar 

  70. T. Nomoto, Y. Inoue, Y. Yao, M. Suzuki, K. Kanamori, H. Takemoto, M. Matsui, K. Tomoda, N. Nishiyama, Sci. Adv., 2020, 6, eaaz1722; DOI: https://doi.org/10.1126/sciadv.aaz1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. S. Y. Sarıaltın, A. Üstündağ, R. M. Chinheya, S. Ipek, Y. Duydu, J. Trace Elem. Med. Biol., 2020, 70, 126913; DOI: https://doi.org/10.1016/j.jtemb.2021.126913.

    Article  Google Scholar 

  72. D. Imperio, L. Panza, Symmetry, 2022, 14, 182; DOI: https://doi.org/10.3390/sym14020182.

    Article  CAS  Google Scholar 

  73. A. A. Halwani, Pharmaceutics, 2022, 14, 106; DOI: https://doi.org/10.3390/pharmaceutics14010106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Y. Hao, Ch. K. Chung, Z. Yu, R. V. Huisin’t Veld, F. A. Ossendorp, P. ten Dijke, L. J. Cruz, Pharmaceutics, 2022, 14, 120; DOI: https://doi.org/10.3390/pharmaceutics14010120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. S. S. Dukhin, V. N. Shilov, Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes, Wiley, New York, 1974, 192 pp.

    Book  Google Scholar 

  76. S. Deng, M. R. Gigliobianco, R. Censi, P. Di Martino, Nanomaterials, 2020, 10, 847; DOI: https://doi.org/10.3390/nano10050847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. P. A. Khaptakhanova, N. B. Svishcheva, T. S. Kurkin, S. A. Uspenskii, Russ. Chem. Bull., 2021, 70, 1729; DOI: https://doi.org/10.1007/s11172-021-3277-1.

    Article  CAS  Google Scholar 

  78. A. Kim, M. Suzuki, Y. Matsumoto, N. Fukumitsu, Y. Nagasaki, Biomaterials, 2021, 268, 120551; DOI: https://doi.org/10.1016/j.biomaterials.2020.120551.

    Article  CAS  PubMed  Google Scholar 

  79. C.-W. Chiang, Y.-C. Chien, W.-J. Yu, C.-Y. Ho, C.-Y. Wang, T.-W. Wang, C.-S. Chiang, P.-Y. Keng, Nanomaterials (Basel), 2021, 11, 2936; DOI: https://doi.org/10.3390/nano11112936.

    Article  CAS  PubMed  Google Scholar 

  80. M. Shirakawa, A. Zaboronok, K. Nakai, Y. Sato, S. Kayaki, T. Sakai, T. Tsurubuchi, F. Yoshida, T. Nishiyama, M. Suzuki, H. Tomida, A. Matsumura, Cells, 2021, 10, 3421; DOI: https://doi.org/10.3390/cells10123421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. M. Faria, M. Björnmalm, K. J. Thurecht, S. J. Kent, R. G. Parton, M. Kavallaris, A. P. R. Johnston, J. J. Gooding, S. R. Corrie, B. J. Boyd, P. Thordason, A. K. Whittaker, M. M. Stevens, C. A. Prestidge, Ch. J. H. Porter, W. J. Parak, Th. P. Davis, E. J. Crampin, F. Caruso, Nat. Nanotechnol., 2018, 13, 777; DOI: https://doi.org/10.1038/s41565-018-0246-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. H. Gan, T. Zhang, Z. Guo, H. Lin, Z. Li, H. Chen, J. Chen, F. Liu, Appl. Sci., 2019, 9, 1019, 1; DOI: https://doi.org/10.3390/app9051019.

    Article  CAS  Google Scholar 

  83. D. Ciuparu, R. F. Klie, Y. Zhu, L. Pfefferle, J. Phys. Chem. B, 2004, 108, 3967; DOI: https://doi.org/10.1021/jp049301b.

    Article  CAS  Google Scholar 

  84. T. T. Xu, J.-G. Zheng, N. Wu, A. W. Nicholls, J. R. Roth, D. A. Dikin, R. S. Ruoff, Nano Lett., 2004, 4, 963; DOI: https://doi.org/10.1021/nl0498785.

    Article  CAS  Google Scholar 

  85. Z.-h. Dou, T.-a. Zhang, G.-y. Shi, C. Peng, M. Wen, J.-c. He, Trans. Nonferrous Met. Soc. China, 2014, 24, 1446; DOI: https://doi.org/10.1016/S1003-6326(14)63211-8.

    Article  CAS  Google Scholar 

  86. Z.-h. Dou, T.-a. Zhang, J.-c. He, Y. Huang, J. Central South Univ., 2014, 21, 900; DOI: https://doi.org/10.1007/s11771-014-2016-2.

    Article  CAS  Google Scholar 

  87. A. Seifolazadeh, S. MohammadI, Bull. Mater. Sci., 2016, 39, 479; DOI: https://doi.org/10.1007/s12034-016-1150-x.

    Article  CAS  Google Scholar 

  88. M. Semnan, M. Jalaly, Mater. Res. Express, 2016, 3, 115018; DOI: https://doi.org/10.1088/2053-1591/3/11/115018.

    Article  Google Scholar 

  89. J. Tian, J. Cai, C. Hui, C. Zhang, L. Bao, M. Gao, C. Shen, H. Gao, Appl. Phys. Lett., 2008, 93, 122105; DOI: https://doi.org/10.1063/1.2976668.

    Article  Google Scholar 

  90. F. Liu, J. Tian, L. Bao, T. Yang, C. Shen, X. Lai, Z. Xiao, W. Xie, S. Deng, J. Chen, J. She, N. Xu, H. Gao, Adv. Mater., 2008, 20, 2609; DOI: https://doi.org/10.1002/adma.200800137.

    Article  CAS  Google Scholar 

  91. F. Liu, C. Shen, Z. Su, X. Ding, S. Deng, J. Chen, N. Xu, H. Gao, J. Mater. Chem., 2010, 20, 2197; DOI: https://doi.org/10.1039/B919260C.

    Article  CAS  Google Scholar 

  92. T. Niemyski, Z. Olempska, J. Less-Common Metals, 1962, 4, 235; DOI: https://doi.org/10.1016/0022-5088(62)90070-X.

    Article  CAS  Google Scholar 

  93. M. Hutchinson, M. Widom, Comp. Phys. Commun., 2012, 183, 1422; DOI: https://doi.org/10.1016/j.cpc.2012.02.017.

    Article  CAS  Google Scholar 

  94. L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Seok, B. H. Hong, Z. Liu, Nat. Rev. Methods Primers, 2021, 1, 5; DOI: https://doi.org/10.1038/s43586-020-00005-y.

    Article  CAS  Google Scholar 

  95. K. Niikura, T. Matsunaga, T. Suzuki, Sh. Kobayashi, H. Yamaguchi, Y. Orba, A. Kawaguchi, H. Hasegawa, K. Kajino, T. Ninomiya, K. Ijiro, H. Sawa, ACS Nano, 2013, 7, 3926; DOI: https://doi.org/10.1021/nn3057005.

    Article  CAS  PubMed  Google Scholar 

  96. O. V. Lapshin, E. V. Boldyreva, V. V. Boldyrev, Russ. J. Inorg. Chem., 2021, 66, 433; DOI: https://doi.org/10.1134/S0036023621030116.

    Article  CAS  Google Scholar 

  97. S. S. Sreedhara, J. Joardar, V. Ravula, N. R. Tata, Adv. Powder Technol., 2020, 31, 3824; DOI: https://doi.org/10.1016/j.apt.2020.07.021.

    Article  CAS  Google Scholar 

  98. T. P. Shakhtshneider, S. A. Myz, M. A. Mikhailenko, T. N. Drebushchak, V. A. Drebushchak, A. P. Fedotov, A. S. Medvedeva, V. V. Boldyrev, Mater. Manuf. Process., 2009, 24, 1064; DOI: https://doi.org/10.1080/10426910902979124.

    Article  CAS  Google Scholar 

  99. K. I. Shingel, M. Selyanin, M. C. Filion, F. Polyak, J. Drug Delivery Sci. Technol., 2017, 39, 140; DOI: https://doi.org/10.1016/j.jddst.2017.03.018.

    Article  CAS  Google Scholar 

  100. Y. Huang, W. G. Dai, Acta Pharm. Sin. B, 2014, 4, 18; DOI: https://doi.org/10.1016/j.apsb.2013.11.001.

    Article  PubMed  Google Scholar 

  101. T. K. Giri, K. Kumar, A. Alexander, Ajazuddin, H. Badwaik, D. K. Tripathi, Bull. Faculty of Pharm. Cairo Univ., 2012, 50, 147; DOI: https://doi.org/10.1016/j.bfopcu.2012.07.002.

    Article  CAS  Google Scholar 

  102. S. A. Myz, T. P. Shakhtshneider, N. A. Tumanov, E. V. Boldyreva, Russ. Chem. Bull., 2012, 61, 1798; DOI: https://doi.org/10.1007/s11172-012-0248-6.

    Article  CAS  Google Scholar 

  103. E. V. Boldyreva, Curr. Pharm. Design, 2016, 22, 4981; DOI: https://doi.org/10.2174/1381612822666160804093120.

    Article  CAS  Google Scholar 

  104. A. V. Dushkin, Chem. Sustain. Dev., 2004, 12, 251.

    CAS  Google Scholar 

  105. V. V. Boldyrev, Herald Russ. Acad. Sci., 2018, 88, 142; DOI: https://doi.org/10.1134/S1019331618020016.

    Article  Google Scholar 

  106. P. K. Ojha, S. Karmakar, Prog. Aerosp. Sci., 2018, 1; DOI: https://doi.org/10.1016/j.paerosci.2018.05.003.

  107. O. Icten, B. Zumreoglu-Karan, Energy Sources, Part A, 2022, 44, 182; DOI: https://doi.org/10.1080/15567036.2021.1882619.

    Article  Google Scholar 

  108. B. Van Devener, J. P. L. Perez, S. L. Anderson, J. Mater. Res., 2009, 24, 3462; DOI: https://doi.org/10.1557/jmr.2009.0412.

    Article  CAS  Google Scholar 

  109. Z. Gao, N. I. Walton, A. Malugin, H. Ghandehari, I. Zharov, J. Mater. Chem., 2012, 22, 877; DOI: https://doi.org/10.1039/c1jm12655e.

    Article  CAS  Google Scholar 

  110. F. Takahashi, I. J. Heilweil, F. L. Dryer, Combust. Sci. Technol., 1968, 65, 151; DOI: https://doi.org/10.1080/00102208908924046.

    Article  Google Scholar 

  111. F. S. Shariatmadar, S. G. Pakdehi, Energy Fuels, 2016, 30, 7755; DOI: https://doi.org/10.1021/acs.energyfuels.6b01370.

    Article  CAS  Google Scholar 

  112. S. C. Wong, A. C. Lin, H. Y. Chi, Symp. (Int.) on Combust., 1991, 23, 1391; DOI: https://doi.org/10.1016/S0082-0784(06)80405-4.

    Article  Google Scholar 

  113. I.-M. Shyu, T.-K. Liu, Combust. Flame, 1995, 100, 634; DOI: https://doi.org/10.1016/0010-2180(94)00032-N.

    Article  CAS  Google Scholar 

  114. A. L. Pickering, C. Mitterbauer, N. D. Browning, S. M. Kauzlaricha, P. P. Power, Chem. Commun., 2007, 580; DOI: https://doi.org/10.1039/b614363f.

  115. Sh. E. Jacob, A. Scheman, M. A. McGowan, Dermatitis, 2018, 29, 3; DOI: https://doi.org/10.1097/DER.0000000000000315.

    Article  CAS  PubMed  Google Scholar 

  116. S. C. Lalla, H. Nguyen, H. Chaudhry, J. M. Killian, L. A. Drage, M. D. P. Davis, J. A. Yiannias, M. R. Hall, Dermatitis, 2018, 29, 200; DOI: https://doi.org/10.1097/DER.0000000000000393.

    Article  CAS  PubMed  Google Scholar 

  117. P. Qi, Q. Chen, D. Tu, S. Yao, Y. Zhang, J. Wang, C. Xie, C. Pan, H. Peng, Biomater. Sci., 2020, 8, 2778; DOI: https://doi.org/10.1039/D0BM00318B.

    Article  CAS  PubMed  Google Scholar 

  118. A. Zaboronok, P. Khaptakhanova, S. Uspenskii, R. Bekarevich, L. Mechetina, O. Volkova, B. J. Mathis, V. Kanygin, E. Ishikawa, A. Kasatova, D. Kasatov, I. Shchudlo, T. Sycheva, S. Taskaev, A. Matsumura, Pharmaceutics, 2022, 14, 761; DOI: https://doi.org/10.3390/pharmaceutics14040761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. A. Singh, B. K. Kim, Yu. Mackeyev, P. Rohani, S. D. Mahajan, M. T. Swihart, S. Krishnan, P. N. Prasad, J. Biomed. Nanotechnol., 2019, 15, 1714; DOI: https://doi.org/10.1166/jbn.2019.2800.

    Article  CAS  PubMed  Google Scholar 

  120. A. Doi, S. Kawabata, K. Iida, K. Yokoyama, Y. Kajimoto, T. Kuroiwa, T. Shirakawa, M. Kirihata, S. Kasaoka, K. Maruyama, H. Kumada, Y. Sakurai, Sh-I. Masunaga, K. Ono, Sh.-I. Miyatake, Neuro-Oncology, 2008, 87, 287; DOI: https://doi.org/10.1007/s11060-008-9522-8.

    Article  CAS  Google Scholar 

  121. H. Cabral, J. Makino, Y. Matsumoto, P. Mi, H. Wu, T. Nomoto, K. Toh, N. Yamada, Y. Higuchi, S. Konishi, M. R. Kano, H. Nishihara, Y. Miura, N. Nishiyama, K. Kataoka, ACS Nano, 2015, 9, 4957; DOI: https://doi.org/10.1021/nn5070259.

    Article  CAS  PubMed  Google Scholar 

  122. M. T. Simnad, in Encyclopedia of Physical Science and Technology, Vol. 10, 3rd Ed., Ed. R. A. Meyers, Academic Press, 2003, p. 775; DOI: https://doi.org/10.1016/B0-12-227410-5/00498-1.

  123. A. M. Terekhova, Y. V. Levchenko, T. V. Matveeva, I. S. Borisov, I. A. Chelmakov, IOP Conf. Ser.: Mater. Sci. Eng., 487, 012007 (2019); DOI: https://doi.org/10.1088/1757-899X/487/1/012007.

    Article  CAS  Google Scholar 

  124. D. Emin, Solid State Chem., 2006, 179, 2791; DOI: https://doi.org/10.1016/j.jssc.2006.01.014.

    Article  CAS  Google Scholar 

  125. M. Bouchacourt, F. Thevenot, J. Less Common Metals, 1981, 82, 227; DOI: https://doi.org/10.1016/0022-5088(81)90223-X.

    Article  CAS  Google Scholar 

  126. M. Bouchacourt, F. Thevenot, J. Less Common Metals, 1981, 82, 219; DOI: https://doi.org/10.1016/0022-5088(81)90222-8.

    Article  CAS  Google Scholar 

  127. M. Bouchacourt, F. Thevenot, J. Less Common Metals, 1979, 67, 327; DOI: https://doi.org/10.1016/0022-5088(79)90007-9.

    Article  CAS  Google Scholar 

  128. F. Farzaneh, F. Golestanifard, M. Sh. Sheikhaleslami, A. A. Nourbakhsh, Ceram. Int., 2015, 41, 13658; DOI: https://doi.org/10.1016/j.ceramint.2015.07.163.

    Article  CAS  Google Scholar 

  129. X. W. Chen, S. M. Dong, Y. M. Kan, H. J. Zhou, J. B. Hu, Y. S. Ding, RSC Adv., 2016, 6, 9338; DOI: https://doi.org/10.1039/C5RA23303H.

    Article  CAS  Google Scholar 

  130. D. Kozień, P. Jeleń, M. Sitarz, M. M. Bućko, Int. J. Refract. Metals Hard Mater., 2020, 86, 105099; DOI: https://doi.org/10.1016/j.ijrmhm.2019.105099.

    Article  Google Scholar 

  131. J. Wei, B. Jiang, Y. Li, C. Xu, D. Wu, B. Wei, J. Mater. Chem., 2002, 12, 3121; DOI: https://doi.org/10.1039/B204792F.

    Article  CAS  Google Scholar 

  132. A. K. Suri, C. Subramanian, J. K. Sonber, T. C. R. Ch. Murthy, Int. Mater. Rev., 2010, 55, 4; DOI: https://doi.org/10.1179/095066009X12506721665211.

    Article  CAS  Google Scholar 

  133. P. Singh, M. Kaur, K. Singh, R. Meena, M. Kumar, J.-H. Yun, A. Thakur, F. Nakagawa, M. Suzuki, H. Nakamura, A. Kumar, Physica E, 2021, 132, 1; DOI: https://doi.org/10.1016/j.physe.2021.114766.

    Article  Google Scholar 

  134. E. M. Sharifi, F. Karimzadeh, M. H. Enayati, Adv. Powder Technol., 2011, 22, 354; DOI: https://doi.org/10.1016/j.apt.2010.05.002.

    Article  CAS  Google Scholar 

  135. L. Takacs, Prog. Mater. Sci., 2002, 47, 355; DOI: https://doi.org/10.1016/S0079-6425(01)00002-0.

    Article  CAS  Google Scholar 

  136. C. Suryanarayana, Prog. Mater. Sci., 2001, 46, 1; DOI: https://doi.org/10.1016/S0079-6425(99)00010-9.

    Article  CAS  Google Scholar 

  137. R. Ma, Y. Bando, Chem. Mater., 2002, 14, 4403; DOI: https://doi.org/10.1021/cm020630v.

    Article  CAS  Google Scholar 

  138. B. Chang, B. L. Gersten, S. T. Szewczyk, J. W. Adams, TechConnect Briefs (Techn. Proc. of the 2006 NSTI Nanotechnology Conf. and Trade Show NSTI-Nanotech 2006), Vol. 1, 2006, p. 369.

    CAS  Google Scholar 

  139. T. Iwagami, Y. Ishikawa, N. Koshizaki, N. Yamamoto, H. Tanaka, S.-I. Masunaga, Y. Sakurai, I. Kato, S. Iwai, M. Suzuki, Y. Yura, J. Nucl. Med. Radiat. Ther., 2014, 5, 2; DOI: https://doi.org/10.4172/2155-9619.1000177.

    Google Scholar 

  140. N. Yamatomo, T. Iwagami, I. Kato, S.-I. Masunaga, Y. Sakurai, S. Iwai, M. Nakazawa, K. Ono, Y. Yura, Radiat. Oncol., 2013, 8, 280; DOI: https://doi.org/10.1186/1748-717X-8-280.

    Article  PubMed  PubMed Central  Google Scholar 

  141. M. S. Petersen, C. Ch. Petersen, R. Agger, M. Sutmuller, M. R. Jensen, P. G. Sørensen, M. W. Mortensen, Th. Hansen, Th. Bjørnholm, H. J. Gundersen, R. Huiskamp, M. Hokland, Anticancer Res., 2008, 28, 571.

    CAS  PubMed  Google Scholar 

  142. M. Kaur, P. Singh, R. Meena, F. Nakagawa, M. Suzuki, H. Nakamura, A. Kumar, J. Cluster Sci., 2021, 32, 221; DOI: https://doi.org/10.1007/s10876-020-01773-z.

    Article  CAS  Google Scholar 

  143. Boron Nitride Nanotubes in Nanomedicine, Eds G. Ciofani and A. Marino, Elsevier, London, 2016, 228 pp.

    Google Scholar 

  144. R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu, D. Wu, J. Am. Chem. Soc., 2002, 124, 7672; DOI: https://doi.org/10.1021/ja026030e.

    Article  CAS  PubMed  Google Scholar 

  145. D. Golberg, P. M. F. J. Costa, O. Lourie, M. Mitome, X. Bai, K. Kurashima, C. Zhi, C. Tang, Y. Bando, Nano Lett., 2007, 7, 2146; DOI: https://doi.org/10.1021/nl070863r.

    Article  CAS  Google Scholar 

  146. Y. Chen, J. Zou, S. J. Campbell, G. Le Caer, Appl. Phys. Lett., 2004, 84, 2430; DOI: https://doi.org/10.1063/1.1667278.

    Article  CAS  Google Scholar 

  147. C. Tang, Y. Bando, C. Liu, S. Fan, J. Zhang, X. Ding, D. Golberg, J. Phys. Chem. B, 2006, 110, 10354; DOI: https://doi.org/10.1021/jp0607014.

    Article  CAS  PubMed  Google Scholar 

  148. M. Radosavljević, J. Appenzeller, V. Derycke, R. Martel, Ph. Avouris, A. Loiseau, J.-L. Cochon, D. Pigache, Appl. Phys. Lett., 2003, 82, 4131; DOI: https://doi.org/10.1063/1.1581370.

    Article  Google Scholar 

  149. G. Ciofani, V. Raffa, J. Yu, Y. Chen, Y. Obata, S. Takeoka, A. Menciassi, A. Cuschieri, Curr. Nanosci., 2009, 5, 33; DOI: https://doi.org/10.2174/157341309787314557.

    Article  CAS  Google Scholar 

  150. H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, D. Golberg, Nano Lett., 2010, 10, 5049; DOI: https://doi.org/10.1021/nl103251m.

    Article  CAS  PubMed  Google Scholar 

  151. Y. Yu, H. Chen, Y. Liu, V. S. J. Craig, C. Wang, L. H. Li, Y. Chen, Adv. Mater. Interfaces, 2014, 2, 1400267; DOI: https://doi.org/10.1002/admi.201400267.

    Article  Google Scholar 

  152. D. Gonzalez-Ortiz, C. Salameh, M. Bechelany, P. Miele, Mater. Today Adv., 2020, 8, 100107; DOI: https://doi.org/10.1016/j.mtadv.2020.100107.

    Article  Google Scholar 

  153. T. Morishita, H. Okamoto, ACS Appl. Mater. Interfaces, 2016, 8, 27064; DOI: https://doi.org/10.1021/acsami.6b08404.

    Article  CAS  PubMed  Google Scholar 

  154. X. Huang, S. Wang, M. Zhu, K. Yang, P. Jiang, Y. Bando, D. Goldberg, C. Zhi, Nanotechnology, 2015, 26, 015705; DOI: https://doi.org/10.1088/0957-4484/26/1/015705.

    Article  CAS  PubMed  Google Scholar 

  155. X. Yang, Y. Guo, X. Luo, N. Zheng, T. Ma, J. Tan, C. Li, Q. Zhang, J. Gu, Compos. Sci. Technol., 2018, 164, 59; DOI: https://doi.org/10.1016/j.compscitech.2018.05.038.

    Article  CAS  Google Scholar 

  156. H. S. Lee, D. K. Sung, S. H. Kim, W. I. Choi, E. T. Hwang, D. J. Choi, J. H. Chang, Appl. Surf. Sci., 2017, 424, 15; DOI: https://doi.org/10.1016/j.apsusc.2017.03.036.

    Article  CAS  Google Scholar 

  157. X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C. R. Bertozzi, J. Am. Chem. Soc., 2009, 131, 890; DOI: https://doi.org/10.1021/ja807334b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. C. Zhi, Y. Bando, C. Tang, D. Golberg, J. Am. Chem. Soc., 2005, 127, 17144; DOI: https://doi.org/10.1021/ja055989.

    Article  CAS  PubMed  Google Scholar 

  159. C. Zhi, Y. Bando, W. Wang, C. Tang, H. Kuwahara, D. Golberg, Chem. Asian J., 2007, 2, 1581; DOI: https://doi.org/10.1002/asia.200700246.

    Article  CAS  PubMed  Google Scholar 

  160. Y. Shimizu, Y. Moriyoshi, H. Tanaka, Appl. Phys. Lett., 1999, 75, 929; DOI: https://doi.org/10.1063/1.124557.

    Article  CAS  Google Scholar 

  161. X. Li, C. Zhi, N. Hanagata, M. Yamaguchi, Y. Bando, D. Golberg, Chem. Commun., 2013, 49, 7337; DOI: https://doi.org/10.1039/C3CC42743A.

    Article  CAS  Google Scholar 

  162. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Phys. Rev. Lett., 1996, 76, 4737; DOI: https://doi.org/10.1103/PhysRevLett.76.4737.

    Article  CAS  PubMed  Google Scholar 

  163. J. Wang, C. H. Lee, Y. Bando, D. Golberg, Y. K. Yap, in B−C−N Nanotubes and Related Nanostructures (Lecture Notes in Nanoscale Science and Technology, Vol. 6), Ed. Y. K. Yap, Springer, New York, 2009, 23; DOI: https://doi.org/10.1007/978-1-4419-0086-9_2.

  164. C. C. Tang, Y. Bando, T. Sato K. A. Kurashima, Chem. Commun., 2002, 12, 1290; DOI: https://doi.org/10.1039/B202177C.

    Article  Google Scholar 

  165. M. W. Smith, K. C. Jordan, C. Park, J.-W. Kim, P. T. Lillehei, R. Crooks, J. S. Harrison, Nanotechnology, 2009, 20, 50; DOI: https://doi.org/10.1088/0957-4484/20/50/505604.

    Google Scholar 

  166. H. Chen, Y. Chen, Y. Liu, L. Fu, C. Huang, D. Llewellyn, Chem. Phys. Lett., 2008, 463, 130; DOI: https://doi.org/10.1016/j.cplett.2008.08.007.

    Article  CAS  Google Scholar 

  167. J. Yu, Y. Chen, R. G. Elliman, M. Petravic, Adv. Mater., 2006, 18, 2157; DOI: https://doi.org/10.1002/adma.200600231.

    Article  CAS  Google Scholar 

  168. S. H. Lim, J. Luo, W. Ji, J. Lin, Catal. Today, 2007, 120, 346; DOI: https://doi.org/10.1016/j.cattod.2006.09.016.

    Article  CAS  Google Scholar 

  169. Y. Chen, M. Conway, J. S. Williams, J. Zou, J. Mater. Res., 2002, 17, 1896; DOI: https://doi.org/10.1557/JMR.2002.0281.

    Article  CAS  Google Scholar 

  170. J. Kim, S. Lee, Y. R. Uhm, J. Jun, C. K. Rhee, G. M. Kim, Acta Mater., 2011, 59, 2807; DOI: https://doi.org/10.1016/j.actamat.2011.01.019.

    Article  CAS  Google Scholar 

  171. P. Ahmad, M. U. Khandaker, Z. R. Khan, Y. M. Amin, RSC Adv., 2015, 5, 35116; DOI: https://doi.org/10.1039/C5RA01594D.

    Article  CAS  Google Scholar 

  172. O. R. Lourie, C. R. Jones, M. B. Bartlett, P. C. Gibbons, R.S. Ruoff, W. E. Buhro, Chem. Mater., 2000, 12, 1808; DOI: https://doi.org/10.1021/cm000157q.

    Article  CAS  Google Scholar 

  173. M. J. Kim, S. Chatterjee, S. M. Kim, E. A. Stach, M. G. Bradley, M. J. Pender, L. G. Sneddon, B. Maruyama, Nano Lett., 2008, 8, 3298; DOI: https://doi.org/10.1021/nl8016835.

    Article  CAS  PubMed  Google Scholar 

  174. R. Ma, Y. Bando, T. Sato, Chem. Phys. Lett., 2001, 337, 61; DOI: https://doi.org/10.1016/S0009-2614(01)00194-4.

    Article  CAS  Google Scholar 

  175. S. Chatterjee, M. J. Kim, D. N. Zakharov, S. M. Kim, E. A. Stach, B. Maruyama, L. G. Sneddon, Chem. Mater., 2012, 24, 2872; DOI: https://doi.org/10.1021/cm3006088.

    Article  CAS  Google Scholar 

  176. C. Tang, Y. Bando, T. Sato, K. Kurashima, Chem. Commun., 2002, 1290; DOI: https://doi.org/10.1039/b202177c.

  177. C. H. Lee, J. Wang, V. K. Kayatsha, J. Y. Huang, Y. K. Yap, Nanotechnology, 2008, 19, 455605; DOI: https://doi.org/10.1088/0957-4484/19/45/455605.

    Article  PubMed  Google Scholar 

  178. C. Zhi, Y. Bando, C. Tang, D. Golberg, R. Xie, T. Sekigushi, Appl. Phys. Lett., 2005, 86, 213110; DOI: https://doi.org/10.1063/1.1938002.

    Article  Google Scholar 

  179. J. Li, J. Li, Y. Yin, Y. Chen, X. Bi, Nanotechnology, 2013, 24, 365605; DOI: https://doi.org/10.1088/0957-4484/24/36/365605.

    Article  PubMed  Google Scholar 

  180. A. Pakdel, C. Zhi, Y. Bando, N. Nakayama, D. Golberg, Nanotechnology, 2012, 23, 215601; DOI: https://doi.org/10.1088/0957-4484/23/21/215601.

    Article  PubMed  Google Scholar 

  181. C. Zhi, Y. Bando, C. Tan, D. Golberg, Solid State Commun., 2005, 135, 67; DOI: https://doi.org/10.1016/j.ssc.2005.03.062.

    Article  CAS  Google Scholar 

  182. Y. Huang, J. Lin, C. Tang, Y. Bando, C. Zhi, T. Zhai, B. Dierre, T. Sekiguchi, D. Golberg, Nanotechnology, 2011, 22, 145602; DOI: https://doi.org/10.1088/0957-4484/22/14/145602.

    Article  PubMed  Google Scholar 

  183. J. S. M. Nithya, A. Pandurangan, RSC Adv., 2014, 4, 26697; DOI: https://doi.org/10.1039/C4RA01204F.

    Article  Google Scholar 

  184. M. Cau, N. Dorval, B. Attal-Trétout, J. L. Cochon, B. Cao, L. Bresson, P. Jaffrennou, M. Silly, A. Loiseau, E. D. Obraztsova, J. Nanosci. Nanotechnol., 2008, 8, 6129; DOI: https://doi.org/10.1166/jnn.2008.SW14.

    Article  CAS  PubMed  Google Scholar 

  185. P. A. Gnoffo, C. C. Fay, J. Thermophys. Heat Transfer, 2013, 27, 369; DOI: https://doi.org/10.2514/1.T3996.

    Article  CAS  Google Scholar 

  186. D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, H. Yusa, Appl. Phys. Lett., 1998, 69, 2045; DOI: https://doi.org/10.1063/1.116874.

    Article  Google Scholar 

  187. R. Arenal, O. Stephan, J.-L. Cochon, A. Loiseau, J. Am. Chem. Soc., 2007, 129, 16183; DOI: https://doi.org/10.1021/ja076135n.

    Article  CAS  PubMed  Google Scholar 

  188. R. S. Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, F. Willaime, Phys. Rev. B, 2001, 64, 121405; DOI: https://doi.org/10.1103/PhysRevB.64.121405.

    Article  Google Scholar 

  189. J. Cumings, A. Zettl, Chem. Phys. Lett., 2000, 316, 211; DOI: https://doi.org/10.1016/S0009-2614(99)01277-4.

    Article  CAS  Google Scholar 

  190. T. Semenic, J. Hu, S. Kraemer, R. Housley, O. Sudre, J. Am. Ceram. Soc., 2018, 101, 4791; DOI: https://doi.org/10.1111/jace.15711.

    Article  CAS  Google Scholar 

  191. Y. Shimizu, Y. Moriyoshi, H. Tanaka, S. Komatsu, Appl. Phys. Lett., 1999, 75, 929; DOI: https://doi.org/10.1063/1.124557.

    Article  CAS  Google Scholar 

  192. C. M. Lee, S. I. Choi, S. S. Choi, S. H. Hong, Curr. Appl. Phys., 2006, 6, 166; DOI: https://doi.org/10.1016/j.cap.2005.07.032.

    Article  Google Scholar 

  193. K. S. Kim, Ch. T. Kingston, A. Hrdina, M. B. Jakubinek, J. Guan, M. Plunkett, B. Simard, ACS Nano, 2014, 8, 6211; DOI: https://doi.org/10.1021/nn501661p.

    Article  CAS  PubMed  Google Scholar 

  194. K. S. Kim, M. Couillard, H. Shin, M. Plunkett, D. Ruth, Ch. T. Kingston, B. Simard, ACS Nano, 2018, 12, 884; DOI: https://doi.org/10.1021/acsnano.7b08708.

    Article  CAS  PubMed  Google Scholar 

  195. D. De Pasquale, A. Marino, Ch. Tapeinos, C. Pucci, S. Rocchiccioli, E. Michelucci, F. Finamore, L. McDonnell, A. Scarpellini, S. Lauciello, M. Prato, A. Larrañaga, F. Drago, G. Ciofani, Mater. Des., 2020, 192, 108742; DOI: https://doi.org/10.1016/j.matdes.2020.108742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. M. Nejad, Ph. Umstätter, H. M. Urbassek, J. Mol. Model., 2020, 26, 54; DOI: https://doi.org/10.1007/s00894-020-4305-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. G. Ciofani, V. Raffa, A. Menciassi, A. Cuschiei, Nanoscale Res. Lett., 2008, 4, 113; DOI: https://doi.org/10.1007/s11671-008-9210-9.

    Article  PubMed  PubMed Central  Google Scholar 

  198. T. H. Ferreira, A. Marino, A. Rocca, I. Liakos, S. Nitti, A. Athanassiou, V. Mattoli, B. Mazzolai, E. M. B. de Sousa, G. Ciofani, Int. J. Pharm., 2015, 481, 56; DOI: https://doi.org/10.1016/j.jpharm.2015.01.048.

    Article  CAS  PubMed  Google Scholar 

  199. H. Nakamura, H. Koganei, T. Miyoshi, Y. Sakurai, K. Ono, M. Suzuki, Bioorg. Med. Chem. Lett., 2015, 25, 172; DOI: https://doi.org/10.1016/j.bmcl.2014.12.005.

    Article  CAS  PubMed  Google Scholar 

  200. G. Ciofani, V. Raffa, A. Menciassi, A. Cuschieri, Biotechnol. Bioeng., 2008, 101, 850; DOI: https://doi.org/10.1002/bit.21952.

    Article  CAS  PubMed  Google Scholar 

  201. X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C. R. Bertozzi, J. Am. Chem. Soc., 2009, 131, 890; DOI: https://doi.org/10.1021/ja807334b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Q. Weng, X. Wang, Y. Bando, D. Golberg, Chem. Soc. Rev., 2016, 45, 3989; DOI: https://doi.org/10.1039/C5CS00869G.

    Article  CAS  PubMed  Google Scholar 

  203. J.-Y. Zhu, D.-W. Zheng, M. Zhang, W. Yu, W.-X. Qiu, J.-J. Hu, J. Feng, X.-Z. Zhang, Nano Lett., 2016, 16, 1; DOI: https://doi.org/10.1021/acs.nanolett.6b02786.

    Article  CAS  Google Scholar 

  204. A. Marino, A. Camponovo, A. Degl’Innocenti, M. Bartolucci, Ch. Tapeinos, Ch. Martinelli, D. De Pasquale, F. Santoro, V. Mollo, S. Arai, M. Suzuki, Y. Harada, A. Petretto, G. Ciofani, Nanoscale, 2019, 11, 21227; DOI: https://doi.org/10.1039/c9nr07976a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. G. Ciofani, S. Danti, D. D’Alessandro, S. Moscato, A. Menciassi, Biochem. Biophys. Res. Commun., 2010, 394, 405; DOI: https://doi.org/10.1016/j.bbrc.2010.03.035.

    Article  CAS  PubMed  Google Scholar 

  206. I. V. Sukhorukova, I. Y. Zhitnyak, A. M. Kovalskii, A. T. Matveev, O. I. Lebedev, X. Li, N. A. Gloushankova, D. Golberg, D. V. Shtansky, Appl. Mater. Interfaces, 2015, 7, 17217; DOI: https://doi.org/10.1021/acsami.5b04101.

    Article  CAS  Google Scholar 

  207. S. Feng, H. Zhang, C. Zhi, X.-D. Gao, H. Nakanishi, Int. J. Nanomedicine, 2018, 13, 641; DOI: https://doi.org/10.2147/IJN.S153476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. X. Li, X. Wang, J. Zhang, N. Hanagata, X. Wang, Q. Weng, A. Ito, Y. Bando, D. Golberg, Nat. Commun., 2014, 8, 13936; DOI: https://doi.org/10.1038/ncomms13936.

    Article  Google Scholar 

  209. S. D. Konda, M. Aref, S. Wang, M. Brechbiel, E. C. Wiener, Magn. Reson. Mater. Phys., Biol., Med., 2001, 12, 104; DOI: https://doi.org/10.1007/BF02668091.

    Article  CAS  Google Scholar 

  210. Y. J. Lu, P. S. Low, J. Control. Release, 2003, 91, 17; DOI: https://doi.org/10.1016/S0168-3659(03)00215-3.

    Article  CAS  PubMed  Google Scholar 

  211. H. Choi, S. R. Choi, R. Zhou, H. F. Kung, I.-W. Chen, Acad. Radiol., 2004, 11, 996; DOI: https://doi.org/10.1016/j.acra.2004.04.018.

    Article  PubMed  Google Scholar 

  212. Platinum and Other Heavy Metal Compounds in Cancer Chemotherapy: Molecular Mechanisms and Clinical Applications (Cancer Drug Discovery and Development Series), Eds A. Bonetti, R. Leone, F. M. Muggia, S. B. Howell, Humana Press, 2009, XXVI + 398 pp.; DOI: https://doi.org/10.1007/978-1-60327-459-3.

  213. G. Ciofani, V. Raffa, A. Menciassi, A. Cuschieri, Nanoscale Res. Lett., 2009, 4, 113; DOI: https://doi.org/10.1007/s11671-008-9210-9.

    Article  CAS  Google Scholar 

  214. T. H. Ferreira, M. C. Miranda, Z. Rocha, A. S. Leal, D. A. Gomes, E. M. B. Sousa, Nanomaterials, 2017, 7, 82; DOI: https://doi.org/10.3390/nano7040082.

    Article  PubMed  PubMed Central  Google Scholar 

  215. L. Li, J. Li, Y. Shi, P. Du, Z. Zhang, T. Liu, R. Zhang, Z. Liu, ACS Nano, 2019, 13, 13843; DOI: https://doi.org/10.1021/acsnano.9b04303.

    Article  CAS  PubMed  Google Scholar 

  216. N. Kuthala, R. Vankayala, Y.-N. Li, C.-S. Chiang, K. C. Hwang, Adv. Mater., 2017, 29, 1700850; DOI: https://doi.org/10.1002/adma.201700850.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Khaptakhanova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2533–2560, December, 2022.

This work was financially supported by the Russian Foundation for Basic Research (project No. 20-13-50377).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uspenskii, S.A., Khaptakhanova, P.A. Boron nanoparticles in chemotherapy and radiotherapy: the synthesis, state-of-the-art, and prospects. Russ Chem Bull 71, 2533–2560 (2022). https://doi.org/10.1007/s11172-022-3686-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3686-9

Key words

Navigation