Skip to main content
Log in

Gelled tetraglyme-based electrolyte for organic electrode materials

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Electrolytes providing a high capacity (up to 400 mA h g−1) of an organic anode material, which is based on a polymeric product of a condensation of triquinoyl with an aromatic amine, in a lithium half-cell have been developed and studied. A complex study of a 1 M solution of LiPF6 in tetraglyme, which belongs to the gelled electrolytes, has been carried out. It is shown that practically no solid electrolyte interphase is formed at the interfaces with lithium and organic electrodes, which makes it possible to monitor the reaction occurring on the electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Friebe, A. Lex-Balducci, U.S. Schubert, ChemSusChem, 2019, 12, 4093; DOI: https://doi.org/10.1002/cssc.201901545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Y. Lu, J. Chen, Nat. Rev. Chem., 2020, 4, 127; DOI: https://doi.org/10.1038/s41570-020-0160-9.

    Article  CAS  Google Scholar 

  3. H. Oubaha, J.-F. Gohy, S. Melinte, ChemPlusChem, 2019, 84, 1179; DOI: https://doi.org/10.1002/cplu.201800652.

    Article  CAS  PubMed  Google Scholar 

  4. A. A. Ignatova, O. V. Yarmolenko, Alternativnaya energetica i ecologiya [Alternative energy and ecology], 2015, 08–09, 112 (in Russian); DOI: https://doi.org/10.15518/isjaee.2015.08-09.014.

    Google Scholar 

  5. S. G. Kostryukov, O. Yu. Chernyaeva, B. S. Tanaseichuk, A. Sh. Kozlov, M. K. Pryanichnikova, A. A. Burtasov, Russ. Chem. Bull., 2020, 69, 1321; DOI: https://doi.org/10.1007/s11172-020-2905-5.

    Article  CAS  Google Scholar 

  6. E. A. Komissarova, V. E. Zhulanov, I. G. Mokrushin, A. N. Vasyanin, E. V. Shklyaeva, G. G. Abashev, Russ. Chem. Bull., 2020, 69, 1944; DOI: https://doi.org/10.1007/s11172-020-2983-4.

    Article  CAS  Google Scholar 

  7. J. J. Shea, C. Luo, ACS Appl. Mater. Interfaces, 2020, 12, 5361; DOI: https://doi.org/10.1021/acsami.9b20384.

    Article  CAS  PubMed  Google Scholar 

  8. G. R. Baymuratova, K. G. Khatmullina, I. K. Yakuschenko, G. Z. Tulibaeva, T. A. Savinykh, P. A. Troshin, A. F. Shestakov, O. V. Yarmolenko, J. Electroanal. Chem., 2021, 889, 115234; DOI: https://doi.org/10.1016/j.jelechem.2021.115234.

    Article  CAS  Google Scholar 

  9. L. Aguilera, Sh. Xiong, J. Scheers, A. Matic, J. Mol. Liquids, 2015, 210, 238; DOI: https://doi.org/10.1016/j.molliq.2015.04.053.

    Article  CAS  Google Scholar 

  10. S. Tobishima, H. Morimoto, M. Aoki, Y. Saito, T. Inose, T. Fukumoto, T. Kuryu, Electrochim. Acta, 2004, 49, 979; DOI: https://doi.org/10.1016/j.electacta.2003.10.009.

    Article  CAS  Google Scholar 

  11. W. A. Henderson, J. Phys. Chem. B, 2006, 110, 13177; DOI: https://doi.org/10.1021/jp061516t.

    Article  CAS  PubMed  Google Scholar 

  12. W. A. Henderson, N. R. Brooks, V. G. Young, Jr., Chem. Mater, 2003, 15, 4685; DOI: https://doi.org/10.1021/cm034352r.

    Article  CAS  Google Scholar 

  13. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; DOI: https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  14. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151; DOI: https://doi.org/10.1016/S0009-2614(97)01206-2.

    Article  CAS  Google Scholar 

  15. Y. Sun, I. Hamada, J. Phys. Chem. B, 2018, 122, 10014; DOI: https://doi.org/10.1021/acs.jpcb.8b07098.

    Article  CAS  PubMed  Google Scholar 

  16. M. Callsen, K. Sodeyama, Z. Futera, Y. Tateyama, I. Hamada, J. Phys. Chem. B, 2017, 121, 180; DOI: https://doi.org/10.1021/acs.jpcb.6b09203.

    Article  CAS  PubMed  Google Scholar 

  17. S. Tsuzuki, W. Shinoda, M. Matsugami, Y. Umebayashi, K. Ueno, T. Mandai, S. Seki, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys., 2015, 17, 126; DOI: https://doi.org/10.1039/C4CP04718D.

    Article  CAS  PubMed  Google Scholar 

  18. G. Z. Tulibaeva, O. V. Yarmolenko, A. F. Shestakov, Russ. Chem. Bull., 2009, 58, 1589; DOI: https://doi.org/10.1007/s11172-009-0218-9.

    Article  CAS  Google Scholar 

  19. A. A. Ignatova, O. V. Yarmolenko, G. Z. Tulibaeva, A. F. Shestakov, S. A. Fateev, J. Power Sources, 2016, 309, 116; DOI: https://doi.org/10.1016/j.jpowsour.2016.01.075.

    Article  CAS  Google Scholar 

  20. A. A. Slesarenko, G. Z. Tulibaeva, G. R. Baymuratova, A. V. Yudina, A. F. Shestakov, O. V. Yarmolenko, Russ. J. Electrochem., 2021, 57, 733; DOI: https://doi.org/10.1134/S1023193521070119.

    Article  CAS  Google Scholar 

  21. D. Morales, R. E. Ruther, J. Nanda, S. Greenbaum, Electrochim. Acta, 2019, 304, 239; DOI: https://doi.org/10.1016/j.electacta.2019.02.110.

    Article  CAS  Google Scholar 

  22. M. Kartal, A. Alp, H. Akbulut, Acta Phys. Polonica A, 2016, 129, 816; DOI: https://doi.org/10.12693/APhysPolA.129.816.

    Article  CAS  Google Scholar 

  23. C. Ó. Laoire, S. Mukerjee, E. J. Plichta, M. A. Hendrickson, K. M. Abraham, J. Electrochem. Soc., 2011, 158, A302; DOI: https://doi.org/10.1149/1.3531981.

    Article  CAS  Google Scholar 

  24. V. Ramezankhani, I. K. Yakuschenko, S. Vasilyev, T. A. Savinykh, A. V. Mumyatov, I. S. Zhidkov, E. V. Shchurik, E. Z. Kurmaev, A. F. Shestakov, P. A. Troshin, J. Mater. Chem. A, 2022, 10, 3044; DOI: https://doi.org/10.1039/D1TA05815K.

    Article  CAS  Google Scholar 

  25. G. R. Baymuratova, A. V. Mumyatov, R. R. Kapaev, P. A. Troshin, O. V. Yarmolenko, Russ. J. Electrochem., 2021, 57, 725; DOI: https://doi.org/10.1134/S102319352107003X.

    Article  CAS  Google Scholar 

  26. A. F. Shestakov, O. E. Romanuyk, A. V. Mumyatov, S. Yu. Luchkin, A. A. Slesarenko, O. V. Yarmolenko, K. J. Stevenson, P. A. Troshin, J. Electroanalyt. Chem., 2019, 836, 143; DOI: https://doi.org/10.1016/j.jelechem.2019.01.063.

    Article  CAS  Google Scholar 

  27. O. V. Yarmolenko, O. E. Romanyuk, A. A. Slesarenko, G. R. Baymuratova, N. I. Shuvalova, A. V. Mumyatov, P. A. Troshin, A. F. Shestakov, Russ. J. Electrochem., 2019, 55, 254; DOI: https://doi.org/10.1134/S1023193519020174.

    Article  Google Scholar 

Download references

Funding

This work was performed within the framework of the state task (State registration No. AAAA-A19-119071190044-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. R. Baymuratova or O. V. Yarmolenko.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2108–2115, October, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baymuratova, G.R., Khatmullina, K.G., Tulibaeva, G.Z. et al. Gelled tetraglyme-based electrolyte for organic electrode materials. Russ Chem Bull 71, 2108–2115 (2022). https://doi.org/10.1007/s11172-022-3634-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3634-8

Key words

Navigation