Skip to main content
Log in

Synthesis of poly(isobutylene-alt-maleic anhydride)-based water-soluble binders and their electrochemical properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, water-soluble polymer electrolytes were synthesized, and their potential as binders for negative electrode active materials was evaluated. Poly(isobutylene-alt-maleic anhydride) was used as a base material, and it was turned water-soluble via reaction with an excess of LiOH in the presence of maleic anhydride. In the next step, a BF3-THF complex was introduced into the lithium carboxylate group, and the ionic conductivity of the polymer electrolyte was improved proportionately by the amount of Lewis acid incorporation. The synthesized water-soluble polymer electrolyte was mixed with SBR and used as a binder for an anode active material. Although the peel strength decreased as the content of the polymer electrolyte binder increased, the lithium-ion battery composed of Li/electrolyte/graphite showed relatively high formation efficiency. In particular, the improvement in cell performances was observed because the resistance of the negative electrode interface was reduced by the ion conductive polymer binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dias F, Polomp L, Veldhuis J (2000) Trend in polymer electrolytes for secondary lithium batteries. J Power Sources 88:169–191

    Article  CAS  Google Scholar 

  2. Tarascon J, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  PubMed  Google Scholar 

  3. Lee J, Lee Y, Bhattacharya B, Nho Y, Park J (2009) Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries. Electrochim Acta 54:4312–4315

    Article  CAS  Google Scholar 

  4. Jung S, Jeong H (2017) Extended Kalman filter-based state of charge and state of power estimation algorithm for unmanned aerial vehicle Li-Po battery packs. Energies 10:1237

    Article  Google Scholar 

  5. Hollinger AS, McAnallen DR, Brockett MT, DeLaney SC, Ma J, Rahn CD (2020) Cylindrical lithium-ion structural batteries for drones. Int J Energy Res 44:560–566

    Article  Google Scholar 

  6. König A, Nicoletti L, Schröder D, Wolff S, Waclaw A, Lienkamp M (2021) An overview of parameter and cost for battery electric vehicles. World Electr Veh J 12:21

    Article  Google Scholar 

  7. Liu Y, Zhang R, Wang J, Wang Y (2021) Current and future lithium-ion battery manufacturing. IScience 24:102332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Schalkwijk W, Scrosati B (2002) Advances in lithium-ion batteries. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  9. Pender J, Jha G, Youn D, Ziegler J, Andoni I, Choi E, Heller A, Dunn B, Weiss P, Penner R, Mullins C (2020) Electrode degradation in lithium-ion batteries. ACS Nano 14:1243–1295

    Article  CAS  PubMed  Google Scholar 

  10. Landesfeind J, Eldiven A, Gasteiger H (2018) Influence of the binder on lithium ion battery electrode tortuosity and performance. J Electrochem Soc 165:A1122–A1128

    Article  CAS  Google Scholar 

  11. Shi Y, Zhou X, Yu G (2017) Material and structural design of novel binder systems for high energy, high-power lithium-ion batteries. Acc Chem Res 50:2642–2652

    Article  CAS  PubMed  Google Scholar 

  12. Jiang M, Mu P, Zhang H, Dong T, Tang B, Qiu H, Chen Z, Cui G (2022) An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett 14:87

    Article  CAS  Google Scholar 

  13. Mu P, Zhang H, Jiang H, Dong T, Zhang S, Wang C, Li J, Ma Y, Dong S, Cui G (2021) Bioinspired antiaging binder additive addressing the challenge of chemical degradation of electrolyte at cathode/electrolyte interphase. J Am Chem Soc 143:18041

    Article  CAS  PubMed  Google Scholar 

  14. Yao Y, McDowell T, Ryu I, Wu H, Liu N, Hu L, Nix D, Cui Y (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. J Am Chem Soc 11:2949–2954

    CAS  Google Scholar 

  15. Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161:617–622

    Article  CAS  Google Scholar 

  16. Chen Y, Zeng S, Qian J, Wang Y, Cao Y, Yang H, Ai X (2014) Li+ conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries. J Am Chem Soc 6:3508–3512

    CAS  Google Scholar 

  17. Markevich E, Salitra G, Aurbach D (2005) Influence of the PVDF binder on the stability of LiCoO2 electrodes. Electrochem Commun 7:1298–1304

    Article  CAS  Google Scholar 

  18. Yen J, Chang C, Lin Y, Shen S, Hong J (2013) Effects of styrene-butadiene rubber/carboxymethylcellulose (SBR/CMC) and polyvinylidene difluoride (PVDF) binders on low temperature lithium ion batteries. J Electrochem Soc 160:1811–1818

    Article  CAS  Google Scholar 

  19. Liu Z, Dong T, Mu P, Zhang H, Liu W, Cui G (2022) Interfacial chemistry of vinylphenol-grafted PVDF binder ensuring compatible cathode interphase for lithium batteries. Chem Eng J 446:136798

    Article  CAS  Google Scholar 

  20. Wei L, Chen C, Hou Z, Wei H (2016) Poly(acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Sci Rep 6:19583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeena M, Lee J, Kim S, Kim C, Kim J, Park S, Ryu J (2014) Multifunctional molecular design as an efficient polymeric binder for silicon anodes in lithium-ion batteries. J Am Chem Soc 6:18001–18007

    CAS  Google Scholar 

  22. Zhao H, Zhou X, Park S-J, Shi F, Fu Y, Ling M, Yuca N, Battaglia V, Liu G (2014) A polymerized vinylene carbonate anode binder enhances performance of lithium-ion batteries. J Power Sources 263:288–295

    Article  CAS  Google Scholar 

  23. Grygiel K, Lee J, Sakaushi K, Antonietti M, Yuan J (2015) Thiazolium poly(ionic liquid)s: synthesis and application as binder for lithium-ion batteries. J Am Chem Soc 4:1312–1316

    CAS  Google Scholar 

  24. Tsao C, Hsu C, Kuo P (2016) Ionic conducting and surface active binder of poly(ethylene oxide)-block-poly(acrylonitrile) for high power lithium-ion battery. Electrochim Acta 196:41–47

    Article  CAS  Google Scholar 

  25. Nguyen V, Kuss C (2020) Review—conducting polymer-based binders for lithium-ion batteries and beyond. J Electrochem Soc 167:065501

    Article  CAS  Google Scholar 

  26. Zhu Y, Wang X, Hou Y, Gao X, Liu L, Wu Y, Shimizu M (2013) A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochim Acta 87:113–118

    Article  CAS  Google Scholar 

  27. Cao C, Li Y, Feng Y, Peng C, Li Z, Feng W (2019) A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Materials 19:401–407

    Article  Google Scholar 

  28. Zhang J, Wang S, Han D, Xiao M, Sun L, Meng Y (2020) Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance. Energy Storage Mater 24:579–587

    Article  CAS  Google Scholar 

  29. Dong T, Zhang H, Ma Y, Zhang J, Du X, Lu C, Shangguan X, Li J, Zhang M, Yang J, Zhou X, Cui G (2019) A well-designed water-soluble binder enlightening the 5 V-class LiNi0.5Mn1.5O4 cathodes. Mater Chem A 7:24594–24601

    Article  CAS  Google Scholar 

  30. Hergenrother P, Smith J (1994) Chemistry and properties of imide oligomers end-capped with phenylethynylphthalic anhydrides. Polymer 35:4857–4864

    Article  CAS  Google Scholar 

  31. Ku J, Hwang S, Ham D, Song M, Shon J, Ji S, Choi J, Doo S (2015) Poly(isobutylene-alt-maleic anhydride) binders containing lithium for high-performance Li-ion batteries. J of Power Sources 287:36–42

    Article  CAS  Google Scholar 

  32. Ryu S, Trapa P, Olugebefola S, Gonzalez-Leon J, Sadoway D, Mayes A (2005) Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes. J Electrochem Soc 152:A158–A163

    Article  CAS  Google Scholar 

  33. Kwon N, Ryu S (2021) Synthesis and electrochemical properties of self-doped solid polymer electrolyte based on lithium 4-styrene sulfonate with BF3-THF. Solid State Ionics 361:115563

    Article  CAS  Google Scholar 

  34. Kelly J, Fafilek G, Besenhard O, Kronberger H, Nauer E (2005) Contaminant absorption and conductivity in polymer electrolyte membranes. J of Power Sources 145:249–252

    Article  CAS  Google Scholar 

  35. Altava B, Compañ V, Andrio A, Castillo L, Mollá S, Burguete M, García-Verdugo E, Luis S (2015) Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer 72:69–81

    Article  CAS  Google Scholar 

  36. Stoeva Z, Martin-Litas I, Staunton E, Andreev Y, Bruce P (2003) Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As. Sb J Am Chem Soc 125:4619–4626

    Article  CAS  PubMed  Google Scholar 

  37. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5:2326–2352

    Article  CAS  Google Scholar 

  38. He J, Wang J, Zhong H, Ding J, Zhang L (2015) Cyanoethylated carboxymethyl chitosan as water soluble binder with enhanced adhesion capability and electrochemical performances for LiFePO4 cathode. Electrochim Acta 182:900–907

    Article  CAS  Google Scholar 

  39. Hwang C, Cho Y, Kang N, Ko Y, Lee U, Ahn D, Kim J, Kim Y, Song H (2015) Selectively accelerated lithium ion transport to silicon anodes via an organogel binder. J of Power Sources 298:8–13

    Article  CAS  Google Scholar 

  40. Nie M, Lucht B (2014) Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries. J Electrochem Soc 161:A1001–A1006

    Article  CAS  Google Scholar 

  41. Wang A, Kadam S, Li H, Shi S, Qi Y (2018) Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Comput Mater 4:15

    Article  CAS  Google Scholar 

  42. An S, Li J, Daniel C, Mohanty D, Nagpure S, Wood D III (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76

    Article  CAS  Google Scholar 

  43. Pathan T, Rashid M, Walker M, Widanage W, Kendrick E (2019) Active formation of Li-ion batteries and its effect on cycle life. J Phys Energy 1:044003

    Article  CAS  Google Scholar 

  44. An S, Li J, Du Z, Daniel C, Wood D III (2017) Fast formation cycling for lithium ion batteries. J of Power Sources 342:846–852

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Chungbuk National University, Korea National University Development Project (2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Woog Ryu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, ST., Jeong, YW., Kim, SS. et al. Synthesis of poly(isobutylene-alt-maleic anhydride)-based water-soluble binders and their electrochemical properties. Ionics 28, 4303–4310 (2022). https://doi.org/10.1007/s11581-022-04647-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04647-8

Keywords

Navigation