Skip to main content
Log in

Properties of gel polymer electrolytes based on poly(butyl acrylate) semi-interpenetrating polymeric networks toward Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A new type of gel polymer electrolyte (GPE) based on poly(butyl acrylate) (PBA) semi-interpenetrating polymer networks (IPNs) and polyvinylidene fluoride (PVDF) was prepared in different molar ratios ranging from 1:0.5 to 1:1. A series of structure characterizations of PBA/PVDF had been measured using FTIR, XRD, and SEM. The electrolyte uptake test revealed that when the semi-IPNs were swollen with the commercial liquid electrolyte solutions, they showed an outstanding electrolyte uptake of 120% with a chemically cross-linked structure. All results indicated that the GPE exhibited the best performance when the molar ratio of BA and PVDF was 1:0.5. The prototype cell assembled with LiFePO4 as cathode, lithium metal as anode, and GPE as the electrolyte as well as separator retained 94% of its initial specific capacity after 100 charge-discharge cycles, showing an excellent cycling stability and a high electrochemical window (up to 4.5 V against Li+/Li) at room temperature. Compared with the liquid electrolyte, the GPE exhibited a similar stable cycling performance and was suitable for practical application in Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang X, Kato M, Naito H, Yamada C, Segami G, Kibe K (2006) A feasibility study of commercial laminated lithium-ion polymer cells for space applications. J Electrochem Soc 153(1):A89–A95

    Article  CAS  Google Scholar 

  2. Cao J, Wang L, He X, Fang M, Gao J, Li J (2013) In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for li-ion batteries. J Mater Chem A 1(19):5955–5961

    Article  CAS  Google Scholar 

  3. Hou X, Siow KS (2001) Novel interpenetrating polymer network electrolytes. Polymer 42(9):4181–4188

    Article  CAS  Google Scholar 

  4. Rocco AM, Fonseca CP, Loureiro FAM, Pereira RP (2004) A polymeric solid electrolyte based on a poly(ethylene oxide)/poly(bisphenol a-co-epichlorohydrin) blend with LiClO4. Solid State Ionics 166(1–2):115–126

    Article  CAS  Google Scholar 

  5. Kim HS, Shin JH, Moon SI, Kim SP (2003) Preparation of gel polymer electrolytes using PMMA interpenetrating polymeric network and their electrochemical performances. Electrochim Acta 48(11):1573–1578

    Article  CAS  Google Scholar 

  6. Choudhury NA, Sampath S, Shukla AK (2009) Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci 2(1):55–67

    Article  CAS  Google Scholar 

  7. Kim HS, Shin JH, Doh CH, Moon SI, Kim SP (2002) Preparation and electrochemical performance of gel polymer electrolytes using tri(ethylene glycol) dimethacrylate. J Power Sources 112(2):469–476

    Article  CAS  Google Scholar 

  8. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197

    Article  CAS  Google Scholar 

  9. Zhao M, Zuo X, Wang C, Xiao X, Liu J, Nan J (2016) Preparation and performance of the polyethylene-supported polyvinylidene fluoride/cellulose acetate butyrate/nano-SiO2, particles blended gel polymer electrolyte. Ionics 22(11):2123–2132

    Article  CAS  Google Scholar 

  10. Sannier L, Bouchet R, Santinacci L, Grugeon S, Tarascon JM (2004) Lithium metal batteries operating at room temperature based on different FEO-PVdF separator configurations. J Electrochem Soc 151(6):A873–A879

    Article  CAS  Google Scholar 

  11. Kang Y, Cho N, Noh KA, Kim JS, Lee C (2005) Improvement on cycling efficiency of lithium by PEO-based surfactants in cross-linked gel polymer electrolyte. J Power Sources 146(1):171–175

    Article  CAS  Google Scholar 

  12. Subramania A, Sundaram NTK, Kumar GV, Vasudevan T (2006) New polymer electrolyte based on (PVA–PAN) blend for Li-ion battery applications. Ionics 12(2):175–178

    Article  CAS  Google Scholar 

  13. Wang Q, Song WL, Fan LZ, Song Y (2015) Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes for high-voltage lithium-ion batteries. J Membrane Sci 486:21–28

    Article  CAS  Google Scholar 

  14. Wang Q, Song WL, Fan LZ, Shi Q (2015) Effect of polyacrylonitrile on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes with interpenetrating crosslinked network for flexible lithium ion batteries. J Power Sources 295:139–148

    Article  CAS  Google Scholar 

  15. Jung HR, Lee WJ (2011) Electrochemical characteristics of electrospun poly(methyl methacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery. Electrochim Acta 58(5):674–680

    Article  CAS  Google Scholar 

  16. Rao M, Geng X, Liao Y, Hu S, Li W (2012) Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery. J Membrane Sci 399-400(3):37–42

    Article  CAS  Google Scholar 

  17. Wang Q, Song WL, Wang L, Song Y, Shi Q, Fan LZ (2014) Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries. Electrochim Acta 132(3):538–544

    Article  CAS  Google Scholar 

  18. Lv YY, Wu J, Wan LS, Xu ZK (2008) Novel porphyrinated polyimide nanofibers by electrospinning. J Phys Chem C 112(29):10609–10615

    Article  CAS  Google Scholar 

  19. Li YH, Wu XL, Kim JH, Xin S, Su J, Yan Y (2013) A novel polymer electrolyte with improved high-temperature-tolerance up to 170 °C for high-temperature lithium-ion batteries. J Power Sources 244(4):234–239

    Article  CAS  Google Scholar 

  20. Xiao Q, Li Z, Gao D, Zhang H (2009) A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery. J Membrane Sci 326(2):260–264

    Article  CAS  Google Scholar 

  21. Wu N, Cao Q, Wang X, Chen Q (2011) Study of a novel porous gel polymer electrolyte based on TPU/PVDF by electrospinning technique. Solid State Ionics 203(1):42–46

    Article  CAS  Google Scholar 

  22. Liu J, Li W, Zuo X, Liu S, Li Z (2013) Polyethylene-supported polyvinylidene fluoride-cellulose acetate butyrate blended polymer electrolyte for lithium ion battery. J Power Sources 226(6):101–106

    Article  CAS  Google Scholar 

  23. Zhu Y, Wang F, Liu L, Xiao S, Chang Z, Wu Y (2013) Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy Environ Sci 6(2):618–624

    Article  CAS  Google Scholar 

  24. Huang X, Zeng S, Liu J, He T, Sun L, Xu D (2015) High-performance electrospun poly(vinylidene fluoride)/poly(propylene carbonate) gel polymer electrolyte for lithium-ion batteries. J Phys Chem C 119(50):27882–27891

    Article  CAS  Google Scholar 

  25. Kim KS, Park SY, Choi S, Lee H (2006) Ionic liquid-polymer gel electrolytes based on morpholinium salt and PVDF(HFP) copolymer. J Power Sources 155(2):385–390

    Article  CAS  Google Scholar 

  26. Jeong HS, Kim JH, Lee SY (2010) A novel poly(vinylidene fluoride- hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separator with phase inversion-controlled microporous structure for a lithium-ion battery. J Mater Chem 20(41):9180–9186

    Article  CAS  Google Scholar 

  27. Ferrari S, Quartarone E, Mustarelli P, Magistris A, Fagnoni M, Protti S (2010) Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. J Power Sources 195(2):559–566

    Article  CAS  Google Scholar 

  28. Wongchitphimon S, Wang R, Jiraratananon R, Shi L, Loh CH (2011) Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. J Membrane Sci 369(1–2):329–338

    Article  CAS  Google Scholar 

  29. Aravindan V, Vickraman P, Madhavi S, Sivashanmugam A, Thirunakaran R, Gopukumar S (2011) Improved performance of polyvinylidenefluoride-hexafluoropropylene based nanocomposite polymer membranes containing lithium bis(oxalato)borate by phase inversion for lithium batteries. Solid State Sci 13(5):1047–1051

    Article  CAS  Google Scholar 

  30. Zeng Z, Yu J, Guo Z, Li Y (2006) Preparation and application of cross-linked core-shell PBA/PS and PBA/PMMA nanoparticles. Front Chem China 1(4):459–464

    Article  Google Scholar 

  31. Mani S, Khabaz F, Godbole RV, Hedden RC, Khare R (2015) Structure and hydrogen bonding of water in polyacrylate gels: effects of polymer hydrophilicity and water concentration. J Phys Chem B 119(49):15381–15393

    Article  CAS  Google Scholar 

  32. Xu X, Liu B, Zhang M, Liu S, Zhu F, Wang J (2016) Electrolytes on governing particle coagulation and size distribution in the emulsion polymerization of butyl acrylate. J Polym Res 23(1):1–9

    Article  CAS  Google Scholar 

  33. Wang Q, Song WL, Fan LZ, Song Y (2015) Flexible, high-voltage and free-standing composite polymer electrolyte membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for lithium-ion batteries. J Membrane Sci 492:490–496

    Article  CAS  Google Scholar 

  34. Wang Q, Song WL, Fan LZ, Shi Q (2015) Effect of alumina on triethylene glycol diacetate-2-propenoic acid butyl ester composite polymer electrolytes for flexible lithium ion batteries. J Power Sources 279:405–412

    Article  CAS  Google Scholar 

  35. Ran Y, Yin Z, Ding Z, Guo H, Yang J (2013) A polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene)/hydroxypropyl methyl cellulose blending for lithium-ion battery. Ionics 19(5):757–762

    Article  CAS  Google Scholar 

  36. Wang G, Lai Y, Zhang Z, Li J, Zhang Z (2015) Enhanced rate capability and cycle stability of lithium-sulfur batteries with a bifunctional MCNT@PEG-modified separator. J Mater Chem A 3(13):7139–7144

    Article  CAS  Google Scholar 

  37. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540

    Article  CAS  Google Scholar 

  38. Wang Q, Fan H, Fan LZ, Shi Q (2013) Preparation and performance of a non-ionic plastic crystal electrolyte with the addition of polymer for lithium ion batteries. Electrochim Acta 114:720–725

    Article  CAS  Google Scholar 

  39. Cho YG, Kim YS, Sung DG, Seo MS, Song HK (2014) Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges. Energy Environ Sci 7(5):1737–1743

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51673154, 51503159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanxi Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liu, Y., Yang, Q. et al. Properties of gel polymer electrolytes based on poly(butyl acrylate) semi-interpenetrating polymeric networks toward Li-ion batteries. Ionics 23, 2319–2325 (2017). https://doi.org/10.1007/s11581-017-2083-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2083-0

Keywords

Navigation