Skip to main content
Log in

Decarbonylation and decarboxylation of propanoic acid on Pd55 clusters: a quantum chemical modeling

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction mechanisms of the decarbonylation and decarboxylation of propanoic acid on icosahedral and cuboctahedral clusters Pd55 were modeled in terms of the density functional theory using the PBE functional and the SBK pseudopotential. According to calculations, the hydrogen abstraction step of the decarboxylation reaction is the most sensitive to the cluster shape and proceeds more readily on the icosahedral cluster. The activation energy difference reaches a value of 4.4 kcal mol−1. In addition, the icosahedral cluster demonstrates a higher activity and selectivity toward decarboxylation compared to the cuboctahedral cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Snåre, I. Kubicková, P. Mäki-Arvela, K. Eränen, D. Yu. Murzin, Ind. Eng. Chem. Res., 2006, 45, 5708; DOI: https://doi.org/10.1021/ie060334i.

    Article  Google Scholar 

  2. A. S. Berenblyum, T. A. Podoplelova, R. S. Shamsiev, E. A. Katsman, V. Ya. Danyushevsky, V. R. Flid, Catalysis in Industry, 2012, 4, 209; DOI: https://doi.org/10.1134/S2070050412030026.

    Article  Google Scholar 

  3. G. C. R. Silva, D. Qian, R. Pace, O. Heintz, G. Caboche, E. Santillan-Jimenez, M. Crocker, Catalysts, 2020, 10, 91; DOI: https://doi.org/10.3390/catal10010091.

    Article  CAS  Google Scholar 

  4. J. Gopeesingh, R. Zhu, R. Schuarca, W. Yang, A. Heyden, J. Q. Bond, Ind. Eng. Chem. Res., 2021, 60, 16171; DOI: https://doi.org/10.1021/acs.iecr.1c03032.

    Article  CAS  Google Scholar 

  5. K. A. Rogers, Y. Zheng, ChemSusChem, 2016, 9, 1750; DOI: https://doi.org/10.1002/cssc.201600144.

    Article  CAS  Google Scholar 

  6. E. Santillan-Jimenez, M. Crocker, J. Chem. Technol. Biotechnol., 2012, 87, 1041; DOI: https://doi.org/10.1002/jctb.3775.

    Article  CAS  Google Scholar 

  7. A. S. Berenblyum, V. Ya. Danyushevsky, P. S. Kuznetsov, E. A. Katsman, R. S. Shamsiev, Petroleum Chemistry (Engl. Transl.), 2016, 56, 663; DOI: https://doi.org/10.1134/S0965544116080028.

    CAS  Google Scholar 

  8. E. A. Katsman, V. Ya. Danyushevsky, P. S. Kuznetsov, R. S. Shamsiev, A. S. Berenblyum, Kinet. Catal. (Engl. Transl.), 2017, 58, 147; DOI: https://doi.org/10.1134/S0023158417020069.

    Article  CAS  Google Scholar 

  9. J. P. Ford, J. G. Immer, H. H. Lamb, Top. Catal., 2012, 55, 175; DOI: https://doi.org/10.1007/s11244-012-9786-2.

    Article  CAS  Google Scholar 

  10. K. Hengst, M. Arend, R. Pfitzenreuter, W. F. Hoelderich, Appl. Catal. B, 2015, 174–175, 383; DOI: https://doi.org/10.1016/j.apcatb.2015.03.009.

    Article  Google Scholar 

  11. A. S. Berenblyum, T. A. Podoplelova, E. A. Katsman, R. S. Shamsiev, V. Ya. Danyushevsky, Kinet. Catal. (Engl. Transl.), 2012, 53, 595; DOI: https://doi.org/10.1134/S0023158412050023.

    Article  CAS  Google Scholar 

  12. J. Fu, D. Mei, Catal. Today, 2021, 365, 181; DOI: https://doi.org/10.1016/j.cattod.2020.05.014.

    Article  CAS  Google Scholar 

  13. R. S. Shamsiev, I. E. Sokolov, F. O. Danilov, V. R. Flid, Kinet. Catal. (Engl. Transl.), 2019, 60, 627; DOI: https://doi.org/10.1134/S0023158419050094.

    Article  CAS  Google Scholar 

  14. J. Lu, S. Behtash, A. Heyden, J. Phys. Chem. C, 2012, 116, 14328; DOI: https://doi.org/10.1021/jp301926t.

    Article  CAS  Google Scholar 

  15. J. Lu, S. Behtash, M. Faheem, A. Heyden, J. Catal., 2013, 305, 56; DOI: https://doi.org/10.1016/j.jcat.2013.04.026.

    Article  CAS  Google Scholar 

  16. K. C. Chukwu, L. Árnadóttir, J. Phys. Chem. C, 2020, 124, 13082; DOI: https://doi.org/10.1021/acs.jpcc.0c00436.

    Article  CAS  Google Scholar 

  17. R. S. Shamsiev, F. O. Danilov, V. R. Flid, Russ. Chem. Bull., 2022, 71, 220; DOI: https://doi.org/10.1007/s11172-022-3400-y.

    Article  CAS  Google Scholar 

  18. S. K. Kundu, R. V. Solomon, W. Yang, E. Walker, O. Mamun, J. Q. Bond, A. Heyden, Catal. Sci. Technol., 2021, 11, 6163; DOI: https://doi.org/10.1039/D1CY01029H.

    Article  CAS  Google Scholar 

  19. D. Uzio, G. Berhault, Catal. Rev. Sci. Eng., 2010, 52, 106; DOI: https://doi.org/10.1080/01614940903510496.

    Article  CAS  Google Scholar 

  20. G. A. Somorjai, J. Y. Park, Angew. Chem. Int. Ed., 2008, 47, 9212; DOI: https://doi.org/10.1002/anie.200803181.

    Article  CAS  Google Scholar 

  21. Y. Zhao, G. Fu, N. Zheng, Catal. Today, 2017, 279, 36; DOI: https://doi.org/10.1016/j.cattod.2016.05.017.

    Article  CAS  Google Scholar 

  22. S. Sreedhala, V. Sudheeshkumar, C. P. Vinod, J. Catal., 2016, 337, 138; DOI: https://doi.org/10.1016/j.jcat.2016.01.017.

    Article  CAS  Google Scholar 

  23. G. Collins, M. Schmidt, C. O’Dwyer, J. D. Holmes, G. P. McGlacken, Angew. Chem., Int. Ed., 2014, 53, 4142; DOI: https://doi.org/10.1002/anie.201400483.

    Article  CAS  Google Scholar 

  24. A. Ruditskiy, S.-I. Choi, H.-C. Peng, Y. Xia, MRS Bull., 2014, 39, 727; DOI: https://doi.org/10.1557/mrs.2014.167.

    Article  CAS  Google Scholar 

  25. Y. Wang, S. Xie, J. Liu, J. Park, C. Z. Huang, Y. Xia, Nano Lett., 2013, 13, 2276; DOI: https://doi.org/10.1021/nl400893p.

    Article  CAS  Google Scholar 

  26. N. S. Kuzmina, S. V. Portnova, E. L. Krasnykh, Fine Chem. Technol., 2020, 15, No. 2, 47; DOI: https://doi.org/10.32362/2410-6593-2020-15-2-47-55.

    Article  CAS  Google Scholar 

  27. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151; DOI: https://doi.org/10.1016/S0009-2614(97)01206-2.

    Article  CAS  Google Scholar 

  28. D. N. Laikov, Yu. A. Ustynyuk, Russ. Chem. Bull., 2005, 54, 820; DOI: https://doi.org/10.1007/s11172-005-0329-x.

    Article  CAS  Google Scholar 

  29. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; DOI: https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  30. W. J. Stevens, H. Basch, M. Krauss, J. Chem. Phys., 1984, 81, 6026; DOI: https://doi.org/10.1063/1.447604.

    Article  Google Scholar 

  31. F. L. Hirschfeld, Theoret. Chim. Acta, 1977, 44, 129; DOI: https://doi.org/10.1007/BF00549096.

    Article  Google Scholar 

  32. P. Nava, M. Sierka, R. Ahlrichs, Phys. Chem. Chem. Phys., 2003, 5, 3372; DOI: https://doi.org/10.1039/B303347C.

    Article  CAS  Google Scholar 

  33. R. S. Shamsiev, I. E. Sokolov, V. R. Flid, Russ. Chem. Bull., 2014, 63, 2585; DOI: https://doi.org/10.1007/s11172-014-0783-4.

    Article  CAS  Google Scholar 

  34. R. S. Shamsiev, F. O. Danilov, Russ. Chem. Bull., 2017, 66, 395; DOI: https://doi.org/10.1007/s11172-017-1746-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Shamsiev.

Additional information

Calculations were carried out on computational facilities at the Joint Supercomputer Center of the Russian Academy of Sciences.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1863–1869, September, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsiev, R.S. Decarbonylation and decarboxylation of propanoic acid on Pd55 clusters: a quantum chemical modeling. Russ Chem Bull 71, 1863–1869 (2022). https://doi.org/10.1007/s11172-022-3603-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3603-2

Key words

Navigation