Skip to main content
Log in

Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Supported metal catalysts containing 5 wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5 % H2 at 300 °C and 15 atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO + CO2 yield, CO2 selectivity, H2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C10–C18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kubičková I, Snäre M, Eranen K, Mäki-Arvela P, Murzin DY (2005) Catal Today 106:197

    Article  Google Scholar 

  2. Snäre M, Kubičková I, Mäki-Arvela P, Eranen K, Murzin DYu (2006) Ind Eng Chem Res 45:5708

    Article  Google Scholar 

  3. Immer JG, Kelly MJ, Lamb HH (2010) Appl Catal A 375:134

    Article  CAS  Google Scholar 

  4. Roberts WL, Lamb HH, Stikeleather LF, Turner TL (2010) US Patent 7,816,570

  5. Maier WF, Roth W, Thies I, Ragué Schleyer PV (1982) Chem Ber 115:808

    Article  CAS  Google Scholar 

  6. Mäki-Arvela P, Kubičková I, Snäre M, Eranen K, Murzin DYu (2007) Energy Fuels 21:30

    Article  Google Scholar 

  7. Snäre M, Kubičková I, Mäki-Arvela P, Chichova D, Eränen K, Murzin DY (2008) Fuel 87:933

    Article  Google Scholar 

  8. Simakova I, Simakova O, Mäki-Arvela P, Simakov A, Estrada M, Murzin DY (2009) Appl Catal A 335:100

    Google Scholar 

  9. Lestari S, Mäki-Arvela P, Bernas H, Simakova O, Sjöholm R, Beltramini J, Max Lu GQ, Myllyoja J, Simakova I, Murzin DY (2009) Energy Fuels 23:3842

    Article  CAS  Google Scholar 

  10. Immer JG (2010) PhD dissertation, North Carolina State University

  11. Immer JG, Lamb HH (2010) Energy Fuels 24:5291

    Article  CAS  Google Scholar 

  12. Anneken DJ, Both S, Christoph R, Fieg G, Steinberner U, Westfechtel A (2012) Ullmann’s encylopedia of industrial chemistry, Vol. 14. Wiley-VCH Weinheim, Germany, p. 73

  13. Kelly MJ, Kim J-H, Roberts GW, Lamb HH (2008) Top Catal 49:178

    Article  CAS  Google Scholar 

  14. Adamson AW (1990) Physical chemistry of surfaces, 5th edn. Wiley, New York

    Google Scholar 

  15. Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC, Boca Raton

    Book  Google Scholar 

  16. Kipling JJ, Wright EHM (1962) J Chem Soc 855

  17. Kipling JJ, Wright EHM (1963) J Chem Soc 3382

  18. Korolev VV, Blinov AV, Ramazanova AG (2004) Colloid J 66:705

    Article  CAS  Google Scholar 

  19. Marmier N (2002) In: Hubbard AT (ed) Encyclopedia of surface and colloid science: inv–pol. Marcel Dekker, New York

    Google Scholar 

  20. Kipling JJ, Wright EHM (1964) J Chem Soc 3535

  21. Lestari S, Maki-Arvela P, Simakova I, Beltramini J, Lu GQM, Murzin DY (2009) Catal Lett 130:48

    Article  CAS  Google Scholar 

  22. Simakova I, Simakova O, Maki-Arvela P, Murzin DY (2010) Catal Today 150:28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy, Advanced Research Projects Agency-Energy (ARPA-E) through a grant to Arizona State University (DE-AR0000011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Henry Lamb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ford, J.P., Immer, J.G. & Lamb, H.H. Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics. Top Catal 55, 175–184 (2012). https://doi.org/10.1007/s11244-012-9786-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9786-2

Keywords

Navigation