Skip to main content
Log in

Tris(5-chloro-2-methoxyphenyl)antimony dicarboxylates (2-MeO-5-ClC6H3)3Sb[OC(O)R]2 (R = CF2Br, C6H3F2-2,5) as highly coordinated antimony compounds

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Bis(bromodifluoroacetato)tris(5-chloro-2-methoxyphenyl)antimony, (2-MeO-5-ClC6H3)3-Sb[OC(O)CBrF2]2 (1), and bis(2,5-difluorobenzoato)tris(5-chloro-2-methoxyphenyl)antimony, (2-MeO-5-ClC6H3)3Sb[OC(O)C6H3F2-2,5]2 (2), were synthesized by the reaction of tris(5-chloro-2-methoxyphenyl)antimony with bromodifluoroacetic and 2,5-difluorobenzoic acids, respectively, in diethyl ether in the presence of hydrogen peroxide. The structures of these compounds were established by IR spectroscopy, 1H, 13C, and 19F NMR spectroscopy, elemental analysis, and X-ray diffraction. The distinguishing features of the molecular structures of tris(5-chloro-2-methoxyphenyl)antimony dicarboxylates are an additional coordination of the antimony atom by three methoxy oxygen atoms (along with intramolecular Sb⋯O(=C) interactions) and an usual orientation of carboxyl groups with respect to the SbC3 moiety. The presence of carboxyl groups and chlorine and fluorine atoms in organic moieties leads to the formation of three-dimensional structures in the crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Sharutin, A. I. Poddel’sky, O. K. Sharutina, Russ. J. Coord. Chem., 2020, 46, 663; DOI: https://doi.org/10.1134/S1070328420100012.

    Article  CAS  Google Scholar 

  2. K. Onishi, M. Douke, T. Nakamura, Y. Ochiai, N. Kakusawa, S. Yasuike, J. Kurita, C. Yamamoto, M. Kawahata, K. Yamaguchi, T. Yagura, J. Inorg. Biochem., 2012, 117, 77; DOI: https://doi.org/10.1016/j.jinorgbio.2012.09.009.

    Article  CAS  Google Scholar 

  3. D. Copolovici, F. Isaia, H. J. Breunig, C. I. Rat, C. Silvestru, RSC Adv., 2014, 4, 26569; DOI: https://doi.org/10.1039/C4RA03482A.

    Article  Google Scholar 

  4. D. Copolovici, V. R. Bojan, C. I. Rat, A. Silvestru, H. J. Breunig, C. Silvestru, Dalton Trans., 2010, 39, 6410; DOI: https://doi.org/10.1039/C003318A.

    Article  CAS  Google Scholar 

  5. S. Okajima, S. Yasuike, N. Kakusawa, A. Osada, K. Yamaguchi, H. Seki, J. Kurita, J. Organomet. Chem., 2002, 656, 234; DOI: https://doi.org/10.1016/S0022-328X(02)01622-4.

    Article  CAS  Google Scholar 

  6. H. Yamamichi, S. Matsukawa, S. Kojima, K. Ando, Y. Yamamoto, Heteroat. Chem., 2011, 22, 553; DOI: https://doi.org/10.1002/hc.20721.

    Article  CAS  Google Scholar 

  7. T. Reznicek, L. Dostal, A. Ruzicka, J. Vinklarek, M. Rezacova, R. Jambor, Appl. Organomet. Chem., 2012, 26, 237; DOI: https://doi.org/10.1002/aoc.2845.

    Article  CAS  Google Scholar 

  8. T. Obata, M. Matsumura, M. Kawahata, S. Hoshino, M. Yamada, Y. Murata, N. Kakusawa, K. Yamaguchi, M. Tanaka, S. Yasuike, J. Organomet. Chem., 2016, 807, 17; DOI: https://doi.org/10.1016/j.jorganchem.2016.02.008.

    Article  CAS  Google Scholar 

  9. Y. Matano, H. Nomura, T. Hisanaga, H. Nakano, M. Shiro, H. Imahori, Organometallics, 2004, 23, 5471; DOI: https://doi.org/10.1021/om0494115.

    Article  CAS  Google Scholar 

  10. Y. Matano, H. Nomura, H. Suzuki, Inorg. Chem., 2000, 39, 1340; DOI: https://doi.org/10.1021/ic991120e.

    Article  CAS  Google Scholar 

  11. Y. Matano, H. Nomura, H. Suzuki, Inorg. Chem., 2002, 41, 1940; DOI: https://doi.org/10.1021/ic0110575.

    Article  CAS  Google Scholar 

  12. T. Iftikhar, M. K. Rauf, S. Sarwar, A. Badshah, D. Waseem, M. N. Tahir, A. Khan, K. M. Khan, G. M. Khan, J. Organomet. Chem., 2017, 851, 89; DOI: https://doi.org/10.1016/j.jorganchem.2017.09.002.

    Article  CAS  Google Scholar 

  13. R. Mushtaq, M. K. Rauf, M. Bond, A. Badshah, M. I. Ali, A. Nadhman, M. Yasinzai, M. N. Tahir, Appl. Organomet. Chem., 2016, 30, 465; DOI: https://doi.org/10.1002/aoc.3456.

    Article  CAS  Google Scholar 

  14. R. Mushtaq, M. K. Rauf, M. Bolte, A. Nadhman, A. Badshah, M. N. Tahir, M. Yasinzai, K. M. Khan, Appl. Organomet. Chem., 2017, 31, e3606; DOI: https://doi.org/10.1002/aoc.3606.

  15. M. I. Ali, M. K. Rauf, A. Badshah, I. Kumar, C. M. Forsyth, P. C. Junk, L. Kedzierskid, P. C. Andrews, J. Chem. Soc., Dalton Trans., 2013, 42, 16733; DOI: https://doi.org/10.1039/c3dt51382c.

    Article  CAS  Google Scholar 

  16. Y. Q. Ma, L. Yu, J. S. Li, Heteroat. Chem., 2002, 13, 299; DOI: https://doi.org/10.1002/hc.10033.

    Article  CAS  Google Scholar 

  17. A. Islam, J. G. Da Silva, F. M. Berbet, S. Magno da Silva, B. L. Rodrigues, H. Beraldo, M. N. Melo, F. Frezard, C. Demicheli, Molecules, 2014, 19, 6009; DOI: https://doi.org/10.3390/molecules19056009.

    Article  Google Scholar 

  18. R.-C. Liu, Y.-Q. Ma, L. Yu, J.-S. Li, J.-R. Cui, R.-Q. Wang, Appl. Organomet. Chem., 2003, 17, 662; DOI: https://doi.org/10.1002/aoc.491.

    Article  CAS  Google Scholar 

  19. J.-S. Li, R.-C. Liu, X.-B. Chi, G.-C. Wang, Q.-S. Guo, Inorg. Chim. Acta, 2004, 357, 2176; DOI: https://doi.org/10.1016/j.ica.2003.12.012.

    Article  CAS  Google Scholar 

  20. Y. Ma, J. Li, Z. Xuan, R. Liu, J. Organomet. Chem., 2001, 620, 235; DOI: https://doi.org/10.1016/S0022-328X(00)00799-3.

    Article  CAS  Google Scholar 

  21. J.-S. Li, Y.-Q. Ma, J.-R. Cui, R.-Q. Wang, Appl. Organomet. Chem., 2001, 15, 639; DOI: https://doi.org/10.1002/aoc.200.

    Article  CAS  Google Scholar 

  22. X.-Y. Zhang, L. Cui, X. Zhang, F. Jin, Y.-H. Fan, J. Mol. Struct., 2017, 1134, 742; DOI: https://doi.org/10.1016/j.molstruc.2017.01.039.

    Article  CAS  Google Scholar 

  23. K. Lowe, R. Powell, J. Fluor. Chem., 2001, 109, 1; DOI: https://doi.org/10.1016/S0022-1139(01)00371-2.

    Article  CAS  Google Scholar 

  24. B. E. Smart, J. Fluor. Chem., 2001, 109, 3; DOI: https://doi.org/10.1016/S0022-1139(01)00375-X.

    Article  CAS  Google Scholar 

  25. B. K. Park, N. R. Kitteringham, Drug Metab. Rev., 1994, 26, 605; DOI: https://doi.org/10.3109/03602539408998319.

    Article  CAS  Google Scholar 

  26. P. Maienfisch, R. G. Hall, Chimia Int. J. Chem., 2004, 58, 93; DOI: https://doi.org/10.2533/000942904777678091.

    Article  CAS  Google Scholar 

  27. V. V. Sharutin, O. K. Sharutina, Russ. Chem. Bull., 2017, 66, 707; DOI: https://doi.org/10.1007/s11172-017-1796-6.

    Article  CAS  Google Scholar 

  28. L. Wen, H. Yin, L. Quan, D. Wang, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, 64, m1303; DOI: https://doi.org/10.1107/s1600536808029656.

    Article  CAS  Google Scholar 

  29. H.-D. Yin, L.-Y. Wen, J.-C. Cui, W.-K. Li, Polyhedron, 2009, 28, 2919; DOI: https://doi.org/10.1016/j.poly.2009.06.065.

    Article  CAS  Google Scholar 

  30. G. Ferguson, B. Kaitner, C. Glidewell, S. Smith, J. Organomet. Chem., 1991, 419, 283; DOI: https://doi.org/10.1016/0022-328x(91)80241-b.

    Article  CAS  Google Scholar 

  31. X.-Y. Zhang, L. Cui, X. Zhang, F. Jin, Y.-H. Fan, J. Mol. Struct., 2017, 1134, 742; DOI: https://doi.org/10.1016/j.molstruc.2017.01.039.

    Article  CAS  Google Scholar 

  32. L. Quan, H. Yin, L. Cui, M. Yang, D. Wang, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009, 65, m656; DOI: https://doi.org/10.1107/s1600536809017449.

    Article  CAS  Google Scholar 

  33. V. V. Sharutin, O. K. Sharutina, Russ. J. Inorg. Chem., 2021, 66, 361; DOI: https://doi.org/10.1134/S0036023621030153.

    Article  CAS  Google Scholar 

  34. G. O. Doak, G. G. Long, L. D. Freedman, J. Organomet. Chem., 1965, 4, 82.

    Article  CAS  Google Scholar 

  35. B. N. Tarasevich, IK Spektry Osnovnyh Klassov Organicheskih Soedineniy: Spravochnye Materialy [IR Spectra of Basic Classes of Organic Compounds: Reference Materials], MGU im. M.V. Lomonosova [Lomonosov Moscow State University], Moscow, 2012, 55 pp. (in Russian).

  36. B. Cordero, V. Gómez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, S. Alvarez, Dalton Trans., 2008, 21, 2832; DOI: https://doi.org/10.1039/B801115J.

    Article  Google Scholar 

  37. Cambridge Crystallographic Data Centre, 2021, deposit@ccdc. cam.ac.uk; http://www.ccdc.cam.ac.uk.

  38. M. Mantina, A.C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A, 2009, 113, 5806; DOI: https://doi.org/10.1021/jp8111556.

    Article  CAS  Google Scholar 

  39. V. V. Sharutin, O. K. Sharutina, Russ. J. Gen. Chem., 2020, 90, 1901; DOI: https://doi.org/10.1134/S1070363220100138.

    Article  CAS  Google Scholar 

  40. Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System, Bruker AXS, Inc., Madison (WI), USA, 1998.

  41. Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Bruker AXS, Inc., Madison (WI), USA, 1998.

  42. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

  43. J. Cioslowski, S. T. Mixon, J. Am. Chem. Soc., 1991, 113, 4142; DOI: https://doi.org/10.1021/ja00011a014.

    Article  CAS  Google Scholar 

  44. E. Salmina, M. A. Grishina, V. A. Potemkin, J. Computer-Aided Molecular Design, 2013, 27, 793; DOI: https://doi.org/10.1007/s10822-013-9677-z.

    Article  CAS  Google Scholar 

  45. V. G. Tsirelson, E. V. Bartashevich, A. I. Stash, V. A. Potemkin, Acta Crystallogr. Sect. B, 2007, 63, 142; DOI: https://doi.org/10.1107/S0108768106046003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Efremov.

Additional information

Deceased.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 707–711, April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharutin, V.V., Potemkin, V.A., Efremov, A.N. et al. Tris(5-chloro-2-methoxyphenyl)antimony dicarboxylates (2-MeO-5-ClC6H3)3Sb[OC(O)R]2 (R = CF2Br, C6H3F2-2,5) as highly coordinated antimony compounds. Russ Chem Bull 71, 707–711 (2022). https://doi.org/10.1007/s11172-022-3469-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3469-3

Key words

Navigation