Skip to main content
Log in

Oxidation of methane to methanol with hydrogen peroxide in situ in the presence of glutathione-stabilized gold nanoclusters under mild conditions

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Oxidation of methane with a hydrogen-air mixture at 70 °C and a partial pressure of methane of 30 atm was studied. Water-soluble glutathione-stabilized nanoclusters Aun (n = 18–25) were used as catalysts for this process. Methanol, methyl hydroperoxide (MeOOH), formaldehyde, and a small amount of CO2 were identified as the reaction products. Formation of H2O2 was also revealed; its maximum concentration was 0.5 mmol L1, and it decreased fivefold in the presence of methane. The study of the reaction kinetics showed that the ratio of initial rates of formation of MeOH, MeOOH, and CH2O was 1: 1: 2. The reaction terminated after 9 h, MeOOH almost completely disappeared, whereas the concentrations of methanol and formaldehyde reached the stationary values of 0.6 and 0.4 mmol L1, respectively. This phenomenon was observed despite the presence of both the oxidizing agent and the substrate in the reaction zone. Possibly, blockage of active sites by the reaction products took place at a certain time because once the volatile products were removed from the system and the gas phase was renewed, the catalyst showed a stable activity over several cycles. When H2 was excluded from the reaction system, the MeOH yield decreased sixfold, whereas the MeOOH yield tripled after 6 h of reaction. When NADH was used as a hydrogen source, the selectivity with respect to methanol decreased. With the use of quantum chemical calculations, a mechanism for the methane oxidation has been developed. It assumes the existence of the same intermediate as a precursor of all main reaction products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hammond, N. Dimitratos, J. A. Lopez-Sanchez, R. L. Jenkins, G. Whiting, S. A. Kondrat, M. H. Ab Rahim, M. M. Forde, A. Thetford, H. Hagen, E. E. Stangland, J. M. Moulijn, S. H. Taylor, D. J. Willock, G. J. Hutchings, ACS Catal., 2013, 3, 8, 1835; DOI: https://doi.org/10.1021/cs400288b.

    Article  CAS  Google Scholar 

  2. A. R. Kulkarni, Z. J. Zhao, S. Siahrostami, J. K. Nørskov, F. Studt, Catal. Sci. Technol., 2018, 8, 114; DOI: https://doi.org/10.1039/C7CY01229B.

    Article  CAS  Google Scholar 

  3. R. Sharma, H. Poelman, G. B. Marin, V. V. Galvita, Catalysts, 2020, 10, No. 2, 194; DOI: https://doi.org/10.3390/catal10020194.

    Article  CAS  Google Scholar 

  4. C. Hammond, M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, D. M. Murphy, A. F. Carley, S. H. Taylor, D. J. Willock, E. E. Stangland, J. Kang, H. Hagen, C. J. Kiely, G. J. Hutchings, Angew. Chem., Int. Ed., 2012, 51, 21, 5129; DOI: https://doi.org/10.1002/anie.201108706.

    Article  CAS  Google Scholar 

  5. X. Xuan, L. Wang, B. Yang, C. Fei, T. Y. Yao, W. Liu, Y. Lou, Q. G. Dai, Y. F. Cai, X. M. Cao, Appl. Catal. B, 2021, 285, 119827; DOI: https://doi.org/10.1016/j.apcatb.2020.119827.

    Article  CAS  Google Scholar 

  6. L. Tao, I. Lee, M. Sanchez-Sanchez, Catal. Sci. Technol., 2020, 10, 21, 7124; DOI: https://doi.org/10.1039/D0CY01325K.

    Article  CAS  Google Scholar 

  7. A. Szecsenyi, G. N. Li, J. Gascon, E. A. Pidko, Chem. Sci., 2018, 9, 6765; DOI: https://doi.org/10.1039/C8SC02376J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. Y. Osadchii, A. I. Olivos-Suarez, A. Szecsenyi, G. Li, M. A. Nasalevich, I. A. Dugulan, P. S. Crespo, E. J. M. Hensen, S. L. Veber, M. V. Fedin, G. Sankar, E. A. Pidko, J. Gascon, ACS Catal., 2018, 8, 6, 5542; DOI: https://doi.org/10.1021/acscatal.8b00505.

    Article  CAS  Google Scholar 

  9. S. A. Ikbal, C. Colomban, D. W. Zhang, M. Delecluse, T. Brotin, V. Dufaud, J. P. Dutasta, A. B. Sorokin, A. Martinez, Inorg. Chem., 2019, 58, 11, 7220; DOI: https://doi.org/10.1021/acs.inorgchem.9b00199.

    Article  CAS  PubMed  Google Scholar 

  10. A. A. Shteinman, Kinet. Catal., 2020, 61, 339; DOI: https://doi.org/10.1134/S0023158420030180.

    Article  CAS  Google Scholar 

  11. X. J. Cui, H. B. Li, Y. Wang, Y. L. Hu, L. Hua, H. Y. Li, X. W. Han, Q. F. Liu, F. Yang, L. M. He, X. Chen, Q. G. Li, J. P. Xiao, D. Deng, X. Bao, Chem., 2018, 4, 1902; DOI: https://doi.org/10.1016/j.chempr.2018.05.006.

    Article  CAS  Google Scholar 

  12. L. A. Levchenko, A. P. Sadkov, N. V. Lariontseva, E. M. Koldasheva, A. K. Shilova, A. E. Shilov, J. Inorg. Biochem., 2002, 88 (3–4), 251; DOI: https://doi.org/10.1016/s0162-0134(01)00385-3.

    Article  CAS  PubMed  Google Scholar 

  13. L. A. Levchenko, V. G. Kartsev, A. P. Sadkov, A. F. Shestakov, A. K. Shilova, A. E. Shilov, Dokl. Chem., 2007, 412, 35; DOI: https://doi.org/10.1134/S0012500807020036.

    Article  CAS  Google Scholar 

  14. A. F. Shestakov, S. A. Golovanova, N. V. Lariontseva, A. P. Sadkov, V. M. Martynenko, L. A. Levchenko, Russ. Chem. Bull., 2015, 64, 2477; DOI: https://doi.org/10.1007/s11172-015-1180-3.

    Article  CAS  Google Scholar 

  15. D. A. Pichugina, N. E. Kuz’menko, A. F. Shestakov, Russ. Chem. Rev., 2015, 84, 1114; DOI: https://doi.org/10.1070/RCR4493.

    Article  CAS  Google Scholar 

  16. G. Li, R. Jin, Acc. Chem. Res., 2013, 46, 8, 1749; DOI: https://doi.org/10.1021/ar300213z.

    Article  CAS  PubMed  Google Scholar 

  17. S. J. Freakley, N. Dimitratos, D. J. Willock, S. H. Taylor, C. J. Kiely, G. J. Hutchings, Acc. Chem. Res., 2021, 54, 11, 2614; DOI: https://doi.org/10.1021/acs.accounts.1c00129.

    Article  CAS  PubMed  Google Scholar 

  18. N. J. Gunsalus, A. Koppaka, S. H. Park, S. M. Bischof, B. G. Hashiguchi, R. A. Periana, Chem. Rev., 2017, 117, 13, 8521; DOI: https://doi.org/10.1021/acs.chemrev.6b00739.

    Article  CAS  PubMed  Google Scholar 

  19. M. H. Ab Rahim, M. M. Forde, R. L. Jenkins, C. Hammond, Q. He, N. Dimitratos, J. A. Lopez-Sanchez, A. F. Carley, 5. H. Taylor, D. J. Willock, D. M. Murphy, C. J. Kiely, G. J. Hutchings, Angew. Chem., Int. Ed., 2013, 52, 4, 1280; DOI: https://doi.org/10.1002/anie.201207717.

    Article  CAS  Google Scholar 

  20. R. J. Lewis, A. Bara Estaun, N. Agarwal, S. J. Freakley, D. J. Morgan, G. J. Hutchings, Catal. Lett., 2019, 149, 3066; DOI: https://doi.org/10.1007/s10562-019-02876-7.

    Article  CAS  Google Scholar 

  21. R. U. McVicker, N. Agarwal, S. J. Freakley, Q. He, S. Althahban, S. H. Taylor, C. J. Kiely, G. J. Hutchings, Catal. Today, 2020, 342, 32; DOI: https://doi.org/10.1016/j.cattod.2018.12.017.

    Article  CAS  Google Scholar 

  22. J. K. Edwards, A. F. Carley, A. A. Herzing, C. J. Kiely, G. J. Hutchings, Faraday Discuss., 2008, 138, 225; DOI: https://doi.org/10.1039/B705915A.

    Article  CAS  PubMed  Google Scholar 

  23. M. Okumura, Y. Kitagawa, K. Yamagcuhi, T. Akita, S. Tsubota, M. Haruta, Chem. Lett., 2003, 32, 9, 822; DOI: https://doi.org/10.1246/cl.2003.822.

    Google Scholar 

  24. J. K. Edwards, S. J. Freakley, R. J. Lewis, J. C. Pritchard, G. J. Hutchings, Catal. Today, 2015, 248, 15, 3; DOI: https://doi.org/10.1016/j.cattod.2014.03.011.

    Article  CAS  Google Scholar 

  25. P. Landon, P. J. Collier, A. J. Papworth, C. J. Kiely, G. J. Hutchings, Chem. Commun., 2002, 18, 2058; DOI: https://doi.org/10.1039/B205248M.

    Article  CAS  Google Scholar 

  26. Y. Yi, L. Wang, G. Li, H. Guo, Catal. Sci. Technol., 2016, 6, 1593; DOI: https://doi.org/10.1039/C5CY01567G.

    Article  CAS  Google Scholar 

  27. J. Huang, E. Lima, T. Akita, A. Guzman, C. Qi, T. Takei, M. Haruta, J. Catal., 2011, 278, 1, 8; DOI: https://doi.org/10.1016/j.jcat.2010.11.012.

    Article  CAS  Google Scholar 

  28. A. Delparish, S. Kanungo, J. van der Schaaf, M. F. Neira d’Angelo, Catal. Sci. Technol., 2019, 9, 5142; DOI: https://doi.org/10.1039/C9CY01304K.

    Article  CAS  Google Scholar 

  29. S. A. Golovanova, A. P. Sadkov, A. F. Shestakov, Kinet. Catal., 2020, 61, 740; DOI: https://doi.org/10.31857/S0453881120040097.

    Article  CAS  Google Scholar 

  30. A. P. Kreshkov, Osnovy analiticheskoi khimii. Teoreticheskie osnovy. Kolichestvenniy analiz [Fundamentals of Analytical Chemistry. Theoretical Basis. Quantitative Analysis], Izd-vo Khimiya, Moscow, 1971, 272 pp. (in Russian).

    Google Scholar 

  31. Y. Negishi, K. Nobusada, T. Tsukuda, J. Am. Chem. Soc., 2005, 127, 5261; DOI: https://doi.org/10.1021/ja042218h.

    Article  CAS  PubMed  Google Scholar 

  32. M. Zhu, E. Lanni, N. Garg, M. E. Bier, R. Jin, J. Am. Chem. Soc., 2008, 130, 4, 1138; DOI: https://doi.org/10.1021/ja0782448.

    Article  CAS  Google Scholar 

  33. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; DOI: https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  34. K. G. Dyall, J. Chem. Phys., 1994, 100, 2118; DOI: https://doi.org/10.1063/1.466508.

    Article  CAS  Google Scholar 

  35. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 1–3, 151; DOI: https://doi.org/10.1016/S0009-2614(97)01206-2.

    Article  CAS  Google Scholar 

  36. D. N. Laikov, Chem. Phys. Lett., 2005, 416, 1–3, 116; DOI: https://doi.org/10.1016/j.cplett.2005.09.046.

    Article  CAS  Google Scholar 

  37. T. C. J. Ovenston, W. T. Rees, Analyst., 1950, 75, 889, 204; DOI: https://doi.org/10.1039/AN9507500204.

    Article  CAS  Google Scholar 

  38. J.-P. Lange, V. L. Sushkevich, A. J. Knorpp, J. A. van Bokhoven, Ind. Eng. Chem. Res., 2019, 58, 20, 8674; DOI: https://doi.org/10.1021/acs.iecr.9b01407.

    Article  CAS  Google Scholar 

  39. N. Agarwal, S. J. Freakley, R. U. McVicker, S. M. Althahban, N. Dimitratos, Q. He, D. J. Morgan, R. L. Jenkins, D. J. Willock, S. H. Taylor, C. J. Kiely, G. J. Hutchings, Science, 2017, 358, 6360, 223; DOI: https://doi.org/10.1126/science.aan6515.

    Article  CAS  PubMed  Google Scholar 

  40. Z. Wu, R. Jin, ACS Nano, 2009, 3, 7, 2036; DOI: https://doi.org/10.1021/nn9004999.

    Article  CAS  PubMed  Google Scholar 

  41. D. A. Pichugina, N. A. Nikitina, N. E. Kuz’menko, J. Phys. Chem. C, 2020, 124, 5, 3080; DOI: https://doi.org/10.1021/acs.jpcc.9b10286.

    Article  CAS  Google Scholar 

  42. N. G. Nikitenko, A. F. Shestakov, Mendeleev Commun., 2017, 27, 2, 144; DOI: https://doi.org/10.1016/j.mencom.2017.03.012.

    Article  CAS  Google Scholar 

  43. J. J. Bravo-Suárez, K. K. Bando, T. Fujitani, S. T. Oyama, J. Catal., 2008, 257, 1, 32; DOI: https://doi.org/10.1016/j.jcat.2008.04.004.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Shestakov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 665–674, April, 2022.

This work was performed within the framework of the state task of the Institute of Problems of Chemical Physics of Russian Academy of Sciences (State refistration No. AAAA-A19-119071190045-0).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovanova, S.A., Sadkov, A.P. & Shestakov, A.F. Oxidation of methane to methanol with hydrogen peroxide in situ in the presence of glutathione-stabilized gold nanoclusters under mild conditions. Russ Chem Bull 71, 665–674 (2022). https://doi.org/10.1007/s11172-022-3463-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3463-9

Key words

Navigation