Skip to main content
Log in

Deep oxidation of rutin and quercetin during their reaction with HAuCl4 in aqueous solutions

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The processes of deep oxidation during the reaction of rutin and quercetin with HAuCl4 under anaerobic conditions at temperatures of 30, 60, and 100 °C were studied. The formation of CO and CO2 was revealed by mass spectrometric analysis to occur at temperatures ≥30 °C. Since the processes of oxidation of quercetin and rutin are similar, it was concluded that, on the one hand, the sugar residue of rutin is not mainly subjected to deep oxidation and, on the other hand, the hydrolysis of the primary product of rutin oxidation occurs to form the primary product of quercetin oxidation. The analysis of the optical absorption spectra of the systems studied shows that gold nanoparticles are formed at the reduction of AuIII to Au0. In a large excess of AuIII ions, some portion of them remains non-consumed and the IR spectrum of an Au: rutin (40: 1) system after water sublimation mainly exhibits vibrations of the sugar residue. A possible mechanism for CO formation due to the decomposition of the hydrated isomer of the product of two-electron oxidation of quercetin containing three consecutively bonded carbonyl groups was proposed on the basis of the PBE density functional quantum chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Haruta, Nature, 2005, 437, 1098.

    Article  CAS  Google Scholar 

  2. A. S. K. Hashmi, G. J. Hutchings, Angew. Chem., Int. Ed. Engl., 2006, 45, 7896.

    Article  Google Scholar 

  3. R. Skouta, C. J. Li, Tetrahedron, 2008, 64, 4917.

    Article  CAS  Google Scholar 

  4. A. S. K. Hashmi, M. Rudolph, Chem. Soc. Rev., 2008, 3, 1766.

    Article  Google Scholar 

  5. A. Furstner, Chem. Soc. Rev., 2009, 38, 3208.

    Article  Google Scholar 

  6. Z. G. Li, C. Brouwer, C. He, Chem. Rev., 2008, 108, 3239.

    Article  CAS  Google Scholar 

  7. A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180.

    Article  CAS  Google Scholar 

  8. D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev., 2008, 108, 3351.

    Article  CAS  Google Scholar 

  9. A. B. Cuenca, S. Montserrat, K. M. Hossain, G. Mancha, A. Lledos, M. Medio-Simon, G. Ujaque, G. Asensio, Org. Lett., 2009, 11, 4906.

    Article  CAS  Google Scholar 

  10. P. W. Davies, N. Martin, Org. Lett., 2009, 11, 2293.

    Article  CAS  Google Scholar 

  11. B. E. Solsona, T. Garcia, C. Jones, S. H. Taylor, A. F. Carley, G. J. Hutchings, Appl. Catal. A-Gen., 2006, 312, 67.

    Article  CAS  Google Scholar 

  12. C. Milone, R. Ingoglia, A. Pistone, G. Neri, S. Galvagno, Catal. Lett., 2003, 87, 201.

    Article  CAS  Google Scholar 

  13. J. C. Fierro-Gonzalez, B.C. Gates, Chem. Soc. Rev., 2008, 37, 2127.

    Article  CAS  Google Scholar 

  14. S. Sanz, L. A. Jones, F. Mohr, M. Laguna, Organometallics, 2007, 26, 952.

    Article  CAS  Google Scholar 

  15. B. T. Guan, D. Xing, G. X. Cai, X. B. Wan, N. Yu, Z. Fang, L. P. Yang, Z. J. Shi, J. Am. Chem. Soc., 2005, 127, 18004.

    Article  CAS  Google Scholar 

  16. A. D. Melhado, W. E. Brenzovich, A. D. Lackner, F. D. Toste, J. Am. Chem. Soc., 2010, 132, 8885.

    Article  CAS  Google Scholar 

  17. N. Marion, S. P. Nolan, Chem. Soc. Rev., 2008, 37, 1776.

    Article  CAS  Google Scholar 

  18. M. A. Cinellu, G. Minghetti, T. Cocco, S. Stoccoro, A. Zucca, M. Manassero, Angew. Chem., Int. Ed. Engl., 2005, 44, 6892.

    Article  CAS  Google Scholar 

  19. V. S. Kulikova, A. F. Shestakov, Russ. J. Phys. Chem., Ser. B (Engl. Transl.), 2007, 26 [Khim. Fiz., 2007, 26, 90].

    Google Scholar 

  20. P. F. Lu, T. C. Boorman, A. M. Z. Slawin, I. Larrosa, J. Am. Chem. Soc., 2010, 132, 5580.

    Article  CAS  Google Scholar 

  21. M. R. Fructos, P. de Frémont, S. P. Nolan, M. M. DíazRequejo, P. J. Pérez, Organometallics, 2006, 25, 2237.

    Article  CAS  Google Scholar 

  22. D. E. De Vos, B. E. Sels, Angew. Chem., Int. Ed. Engl., 2005, 44, 30.

    Article  Google Scholar 

  23. L. A. Levchenko, A. P. Sadkov, V. G. Kartsev, A. F. Shestakov, A. K. Shilova, A. E. Shilov, Dokl. Russ. Akad. Nauk, 2007, 412, 500 [Dokl. Chem. (Engl. Transl.), 2007, 412].

    Google Scholar 

  24. L. A. Levchenko, N. G. Lobanova, V. M. Martynenko, A. P. Sadkov, A. F. Shestakov, A. K. Shilova, A. E. Shilov, Dokl. Russ. Akad. Nauk, 2010, 430, 773 [Dokl. Chem. (Engl. Transl.), 2010, 430].

    Google Scholar 

  25. A. M. Bondzic, T. D. Lazarevic-Pasti, B. P. Bondzic, M. B. Colovic, M. B. Jadranin, V. M. Vasic, N. J. Chem., 2013, 37, 901.

    Article  CAS  Google Scholar 

  26. M. Balcerzak, M. Kopacz, A. Kosiorek, E. Swiecicka, S. Kus, Anal. Sci., 2004, 20, 1333.

    Article  CAS  Google Scholar 

  27. H. El Hajji, E. Nkhili, V. Tomao, O. Dangles, Free Radic. Res., 2006, 40, 303.

    Article  Google Scholar 

  28. A. Pekal, M. Biesaga, K. Pyrzynska, Biometals, 2011, 24, 41.

    Article  CAS  Google Scholar 

  29. E. Nkhili, M. Loonis, S. Mihai, H. El Hajji, O. Dangles, Food Funct., 2014, 5, 1186.

    Article  CAS  Google Scholar 

  30. E. Balogh-Hergovich, J. Kaizer, G. Speier, J. Mol. Catal. A: Chem., 2000, 159, 215.

    Article  CAS  Google Scholar 

  31. R. A. Steiner, K. H. Kalk, B. W. Dijkstra, Proc. Nat. Acad. Sci. USA, 2002, 99, 16625.

    Article  CAS  Google Scholar 

  32. J. S. Pap, J. Kaizer, G. Speier, Coord. Chem. Rev., 2010, 254, 781.

    Article  CAS  Google Scholar 

  33. A. Matuz, M. Giorgi, G. Speier, J. Kaizer, Polyhedron, 2013, 63, 41.

    Article  CAS  Google Scholar 

  34. Ying-Ji Sun, Qian-Qian Huang, Jian-Jun Zhang, Inorg. Chem., 2014, 53, 29322.

    Google Scholar 

  35. P. E. M. Siegbahn, Inorg. Chem., 2004, 43, 5944.

    Article  CAS  Google Scholar 

  36. S. Fiorucci, J. Golebiowski, D. Cabrol-Bass, S. Antonczak, Chem. Phys. Chem., 2004, 5, 1726.

    CAS  Google Scholar 

  37. H. J. Xie, Q. F. Lei, W. J. Fang, Sci. China-Chem., 2012, 55, 1832.

    Article  CAS  Google Scholar 

  38. A. F. Shestakov, A. V. Chernyak, N. V. Lariontseva, S. A. Golovanova, A. P. Sadkov, L. A. Levchenko, Mendeleev Commun., 2013, 23, 1.

    Article  Google Scholar 

  39. L. A. Levchenko, S. A. Golovanova, N. V. Lariontseva, A. P. Sadkov, D. N. Voilov, Yu. M. Shula, N. G. Nikitenko, A. F. Shestakov, Russ. Chem Bull. (Int. Ed.), 2011, 60, 426 [Izv. Akad. Nauk, Ser. Khim., 2011, 3, 417].

    Article  CAS  Google Scholar 

  40. M. G. Boersma, J. Vervoort, H. Szymusiak, K. Lemanska, B. Tyrakowska, N. Cenas, J. Segura-Aguilar, Chem. Res. Toxicol., 2000, 13, 185.

    Article  CAS  Google Scholar 

  41. D. Nowak, A. Kuzniar, M. Kopacz, Struct. Chem., 2010, 21, 323.

    Article  CAS  Google Scholar 

  42. I. G. Zenkevich, A. Y. Eshchenko, S. V. Makarova, A. G. Vitenberg, Y. G. Dobryakov, V. A. Utsal, Molecules, 2007, 12, 654.

    Article  CAS  Google Scholar 

  43. A. L. Zhou, S. Kikandi, O. A. Sadik, Electrochem. Commun., 2007, 9, 2246. Received December 23, 2014; in revised form April 1, 2015

    Article  CAS  Google Scholar 

  44. A. L. Zhou, O. A. Sadik, J. Agric. Food Chem., 2008, 56, 12081.

    Article  CAS  Google Scholar 

  45. Rajat Pal, Swati Panigrahi, Dhananjay Bhattacharyya, Abhay Sankar Chakraborti, J. Mol. Struct., 2013, 1046, 153.

    Article  CAS  Google Scholar 

  46. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

    Article  CAS  Google Scholar 

  47. D. N. Laikov, Yu. A. Ustynyuk, Russ. Chem. Bull. (Int. Ed.), 2005, 54, 820 [Izv. Akad. Nauk, Ser. Khim., 2005, 804].

    Article  CAS  Google Scholar 

  48. G. Z. Jin, Y. Yamagata, K. I. Tomita, Acta Crystallogr., 1990, 310, 46

    Google Scholar 

  49. G. Varsanyi, Assignment for Vibrational Spectra of 700 Benzene Derivatives, Ed. L. Lańg, Hilger, Budapest, 1974.

  50. J. S. Barnes, K. A. Schug, J. Agric. Food Chem., 2014, 62, 4322.

    Article  CAS  Google Scholar 

  51. S. Dall’Acqua, G. Miolo, G. Innocenti, S. Caffieri, Molecules, 2012, 17, 8898.

    Article  Google Scholar 

  52. L. Gebicka, K. Stawowska, Centr. Eur. J. Chem., 2012, 10, 187.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Shestakov.

Additional information

Based on the materials of the XXVI Conference “Modern Chemical Physics” (September 20–October 1, 2014, Tuapse, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2477–2485, October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakov, A.F., Golovanova, S.A., Lariontseva, N.V. et al. Deep oxidation of rutin and quercetin during their reaction with HAuCl4 in aqueous solutions. Russ Chem Bull 64, 2477–2485 (2015). https://doi.org/10.1007/s11172-015-1180-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-015-1180-3

Keywords

Navigation